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Abstract

We introduce controlled K K-theory groups associated to a pair
(A, B) of separable C*-algebras. Roughly, these consist of elements of
the usual K-theory group Ky(B) that approximately commute with
elements of A. Our main results show that these groups are related
to Kasparov’s K K-groups by a Milnor exact sequence, in such a way
that Rgrdam’s K L-group is identified with an inverse limit of our
controlled K K-groups.

In the case that the C*-algebras involved satisfy the UCT, our
Milnor exact sequence agrees with the Milnor sequence associated to
a K K-filtration in the sense of Schochet, although our results are
independent of the UCT. Applications to the UCT will be pursued in

subsequent work.
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1 Introduction

Given two C*-algebras A and B, Kasparov associated an abelian group
KK (A, B) of generalized morphisms between A and B. The Kasparov K K-
groups were designed to have applications to index theory and the Novikov
conjecture [14], but now play a fundamental role in many aspects of C*-
algebra theory (and elsewhere). This is particularly true in the Elliott pro-
gram [9] to classify C*-algebras by K-theoretic invariants.

Our immediate goal in this paper is to introduce controlled K K -theory
groups and relate them to Kasparov’s K K-theory groups. The idea — which
we will pursue in subsequent work — is that the controlled groups allow more
flexibility in computations. Our groups are analogues of the controlled K-
theory groups introduced by the second author as part of his work on the
Novikov conjecture [31], and later developed by him in collaboration with
Oyono-Oyono [16]. Having said that, our approach in this paper is indepen-
dent of, and in some sense dual to, these earlier developments: controlled
K-theory abstracts the approach to the Novikov conjecture through opera-
tors of controlled propagation, while the controlled K K-theory we introduce
here abstracts the dual approach to the Novikov conjecture through almost
flat bundles (see for example [2] and [28, Chapter 11]).

Our larger goal is to establish a new sufficient condition for a nuclear
C*-algebra to satisfy the UCT of Rosenberg and Schochet [19], analogously



to recent results on the Kiinneth formula using controlled K-theory ideas
[17, 27]. The applications will come in the companion paper [29]. Our goal
in this paper is to establish the basic theory, which we hope will be useful in
other settings.

Controlled K K-theory and the Milnor sequence

We now discuss a version of our controlled K K-theory groups in more detail.
Let B be a separable C*-algebra, let B ® I be its stabilization, and
let M(B ® K) be its stable multiplier algebra. Define P(B) to consist of

10
all projections in p € My(M(B ® K)) such that p — (O 0) is in the ideal
M5(B ® K). Then the formula
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00 (1)

mo(P(B)) — Ko(B), [p]~ [p] — [

gives a bijection from the set of path components of P(B) to the usual Ky-
group of B.

Now, assume for simplicity that A is a separable, unital, and nuclear’ C*-
algebra. Let m : A — B(¢?) be an infinite amplification of a faithful unital
representation?, and use the composition

A B(?) = M(K) € M(B®K)

of m and the canonical inclusion of M (K) into M (B ® K) to consider A as
a C*-subalgebra of M (B ® K). Having A act as diagonal matrices, we may
also identify A with a C*-subalgebra of My(M (B ® K)). For a finite subset
X of A and € > 0, define

P(X,B) :={peP(B)| |[p,a]| <eforall a e X}.

!The assumptions of unitality and nuclearity are not necessary, but simplify the defi-
nitions - see the body of the paper for the general versions.

%i.e. take a faithful unital representation on a separable Hilbert space, and add it to
itself countable many times. It turns out the choices involved here do not matter in any
serious way.



Define the controlled K K -theory group® associated to X and € to be
KK.(X,B) :=m(P.(X, B)).

Thanks to the isomorphism of line (1), we think of KK (X, B) as “the part of
Ky(B) that commutes with X up to €”. This idea — of considering elements of
K-theory that asymptotically commute with some representation — is partly
inspired by the E-theory of Connes and Higson [3].

Now, let (X,) be a nested sequence of finite subsets of A with dense
union, and let (¢,) be a decreasing sequence of positive numbers than tend
to zero. As it is easier to commute with X,, up to ¢, that it is to commute
with X, 11 up to €,,1, we get a sequence of “forgetful” homomorphisms

> KK, (X,,B) > KK,

€n—1

(Xp1,B) > -+ > KK, (X1, B).

Thus we may build the inverse limit lim K K, (X, B) of abelian group theory
associated to this sequence. Replacing B with its suspension S B, we may also
build the lim'-group* lim'K K., (Xn, SB) associated to the corresponding

sequence. We are now ready to state a special case of our main theorem.

Theorem 1.1. For any separable C*-algebras A and B with A unital and
nuclear”, there is a short exact sequence

0 —lim'KK, (X,,SB)— KK(A,B) —lim KK, (X,, B) —=0.

We will explain the idea of the proof below, but first give a more precise
version involving Rgrdam’s K L-groups [18, Section 5], and some comparisons
of the results with the previous literature.

3Tt is a group in a natural way, in a way that is compatible with the group structure
on KO (B)

4The lim'-group is constructed using the first derived functor of the inverse limit func-
tor: see for example [26, Section 3.5]. See for example [26, Definition 3.5.1] for concrete
definitions of the inverse limit and lim! groups.

5There is also a very similar version for general separable A: see the main body of the

paper



The topology on KK and Schochet’s Milnor sequence

Recall that K K (A, B) is equipped with a canonical topology, which makes it
a (possibly non-Hausdorff) topological group. This topology can be described
in several different ways that turn out to be equivalent, as established by
Dadarlat in [5] (see also [21]). We define® K L(A, B) to be to be the associated
‘Hausdorffification’, i.e. the quotient KK (A, B)/{0} of KK (A,B) by the
closure of the zero element.

The following theorem relating our controlled K K-theory groups to the
topology on K K is a more precise version of Theorem 1.1, and is what we

actually establish in the main body of the paper.

Theorem 1.2. For any separable C*-algebras A and B with A unital and
nuclear”, there are canonical isomorphisms

lim'K K., (X,,SB) = {0} and limKK, (X, B)= KL(A,B).

The short exact sequence in Theorem 1.1 is an analogue of Schochet’s
Milnor exact sequence [20] associated to a K K-filtration. A K K-filtration
consists of a K K-equivalence of A with the direct limit of an increasing
sequence (A,) of C*-algebras where each A,, has unitization the continuous
functions on some finite CW complex. Schochet [20, Theorem 1.5] shows
that such a filtration exists if and only if A satisfies the UCT. Schochet |20,
Theorem 1.5] then proves that there is an exact sequence

0 —1lim'KK(A,,SB) — KK(A,B) —=1lim KK (A,, B) —=0.

It follows from Theorem 1.2 and [22, Proposition 4.1] that our Milnor se-
quence from Theorem 1.1 agrees with Schochet’s when A satisfies the UCT.
Our Milnor sequence can thus be thought of as a generalization of Schochet’s

sequence that works in the absence of the UCT.

6The original definition of K'L(A, B) is due to Rgrdam [18, Section 5], and only makes
sense if the pair (A, B) satisfies the UCT. The definition we are using was suggested by
Dadarlat [5, Section 5], and is equivalent to Rgrdam’s when A satisfies the UCT by [5,
Theorem 4.1].

7Again, these extra assumptions on A are not necessary, with minor changes to the
definitions.



Discussion of proofs

Continuing to assume for simplicity that A is unital and nuclear, let us
identify A with a C*-subalgebra of M (B®XK) as in the statement of Theorem
1.1. Then we define P(A, B) to be the collection of all continuous, bounded,
projection-valued functions p : [1,00) — My (M (B®K)) such that [p;, a] — 0

as t — oo for all a € A, and so that p, — (1) 8 is in My (B ® K) for all t.

Define K Kp(A, B) to be the quotient of P(A, B), modulo the equivalence
relation one gets by saying py and p; are homotopic if they are restrictions
to the endpoints of an element of P(A, C[0,1] ® B).

One can then show® that K K (A, B) is naturally isomorphic to K Kp(A, B).
The first important ingredient in this is the description of K K (A, B) as the
K-theory of an appropriate localization algebra, which was done by Dadar-
lat, Wu and the first author in [8, Theorem 4.4] (inspired by ideas of the
second author in the case of commutative C*-algebras [30]). The other im-
portant (albeit implicit) ingredient we use for the isomorphism KK (A, B) =~
KKp(A, B) is the fundamental theorem of Kasparov ([13, Section 6, Theo-
rem 1], and see also [23, Theorem 19] and [1, Section 18.5]) that the equiv-
alence relations on Kasparov cycles induced by operator homotopy and ho-
motopy give rise to the same K K-groups.

Having described K K (A, B) using continuous paths of projections, we
can now also describe the topology on this group in this language: roughly,
a sequence (p™) converges to p in P(A, B) if for all e > 0 and finite X < A
there is ¢y such that for all ¢t > ¢y, p;' can be connected to p, via a homotopy
passing through P.(X, B). This topology on P(A, B) induces a topology on
KKp(A, B), and we show that this topology agrees with the usual one on
KK (A, B) using an abstract characterization of the latter due to Dadarlat
[5, Section 3].

Having got this far, it is not too difficult to see that there is a well-defined

8We do not actually show this, only the more general version where A is non-unital and
not-necessarily nuclear; nonetheless, this result directly follows from the same methods.



map
KKp(A, B) > lim KK, (X, B) (2)

defined by evaluating a path (p;)se[1,.0) in P(A, B) at larger and larger values
of t, and that there is a well-defined map

lim'K K. (X,SB) - KKp(A, B) (3)

defined by treating an element of K K (X, SB) as a projection-valued func-
10

tion from [0, 1] to K K.(X, B) that agrees with (0 O) at its endpoints, and

stringing a countable sequence of these together to get an element (p)we[1,00)
in P(A, B). Moreover, it is essentially true by definition that the map in line
(2) contains the closure of {0} in its kernel, and the map in line (3) takes
image if the closure of {0}. To establish Theorem 1.2, we show that these

maps are both isomorphisms.

Notation and conventions

We write % for ¢*(N).

Throughout, the symbols A and B are reserved for separable C*-algebras
(the letters C', D and others may sometimes refer to non-separable C*-
algebras). The unit ball of a C*-algebra C' is denoted by (1, its unitization
is C*, and its multiplier algebra is M (C).

Our conventions on Hilbert modules follow those of Lance [15]. We will
always assume that Hilbert modules are over separable C*-algebras, and are
countably generated as discussed on [15, page 60]. If it is not explicitly
specified otherwise, all Hilbert modules will be over the C*-algebra called B.
For Hilbert B-modules E and F, we write L(E, F') (respectively K(E, F))
for the spaces of adjointable (respectively compact) operators from E to F
in the usual sense of Hilbert module theory [15, pages 8-10]. We use the
standard shorthands L(F) := L(E, F) and K(E) := IC(E, E). In this paper,
a representation of A will always refer to a representation of A on a Hilbert
module, i.e. a »-homomorphism 7 : A — L(F) for some Hilbert module £

(almost always over B, as above). We write E* for the (completed) infinite
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direct sum Hilbert module @ | E = * x E, and if 7 : A —> L(E) is a
representation, we write 7% : A — L(E®) for the amplified representation,
so in tensor product language 7*° = 1l @7 : A —» L({?® E). We say a
representation (7, ) has infinite multiplicity if it isomorphic to (0%, F'®)
for some other representation (o, F').

The symbol ‘®’ always denotes a completed tensor product: either the
(external or internal) tensor product of Hilbert modules [15, Chapter 4], or
the minimal tensor product of C*-algebras.

If F is a Banach space and X a locally compact Hausdorff space, we
let Cy(X, E) (respectively, Cyup(X, E), Cy(X, E)) denote the Banach space
of continuous and bounded (respectively uniformly continuous and bounded,
continuous and vanishing at infinity) functions from X to E. We write
elements of these spaces as e or (e;).ex, with e, € E denoting the value

¢ Y

of e at a point x € X. We will sometimes say that e is a ‘...” if it is a
pointwise a ‘...": for example, ‘u € Cy([1,00), L(F7, F3)) is unitary’ means ‘u;
is unitary in L(Fy, Fy) for all t € [1,0)’; if Eis a C*-algebra and e € Cy(X, F),
this is consistent with the standard use of ‘unitary’ and so on. With u as
above, if b is an element of L(F}) we write ub for the function ¢ — ;b in
Cuw([1,00), L(Fy, F»)) and similarly for cu with ¢ € L(F») and so on.

For K-theory, K.(A) := Ky(A) ® K;(A) denotes the graded K-theory
group of a C*-algebra, and KK,(A,B) := KKy (A,B) ® KK,(A, B) the
graded K K-theory group. We will typically just write K K (A, B) instead of
KKo(A, B).

Outline of the paper

Sections 2 and 3 are background. In Section 2 we recall some basic facts about
so-called absorbing representation, and prove some basic results. Most of the
material in Section 2 is essentially from papers of Thomsen [25], Dadarlat-
Eilers [6, 7], and Dadarlat [5]: we do not claim any real originality. In Section
3 we recall the localization algebra of Dadarlat, Wu and the first author [§]
(inspired by much earlier ideas of the second author [30]), and prove some
technical results about this.



Sections 4 and 5 introduce a group K Kp(A, B) that consists of (homotopy
classes) of projections that asymptotically commute with A and relate it to
K K-theory: the culminating results show that KK (A, B) and KKp(A, B)
are isomorphic as topological groups. In Section 4 we introduce K Kp(A, B),
show that it is a commutative monoid, and then that it is isomorphic to
KK(A,B) (whence a group). In Section 5 we introduce a topology on
KKp(A,B). We then use a characterization of Dadarlat [5, Section 3] to
identify this with the canonical topology on K K (A, B) that was introduced
and studied by Brown-Salinas, Schochet, Pimsner, and Dadarlat in various
guises.

Sections 6 and 7 establish Theorem 1.2 (and therefore Theorem 1.1).
Section 6 identifies the quotient K Kp(A, B)/{0} with lim KK.(X,B) (and
therefore identifies K L(A, B) with this inverse limit). Section 7 identifies the
closure of zero in K Kp(A, B) with the appropriate lim' group, completing
the proof of the main results.

Finally, Appendix A gives some alternative pictures of our controlled
K K-groups that will be useful for our subsequent work.
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2 Strongly absorbing representations

Throughout this section, A and B refer to separable C*-algebras.

In this section we establish conventions and terminology regarding repre-
sentations on Hilbert modules. The ideas in this section are not original: the
original sources are papers of Thomsen [25], Dadarlat [5], Dadarlat-Eilers [7],
and Kasparov [12]. Nonetheless, we need variations of the material appearing
in the literature, so record what we need here for the reader’s convenience
and provide proofs where a precise result has not appeared before.

The definition of absorbing representation below is essentially’ due to
Thomsen [25, Definition 2.6].

Definition 2.1. A representation 7 : A — L(F) is absorbing (for the pair
(A, B)) if for any Hilbert B-module E and ccp map o : A — L(E), there is
a sequence (v,,) of isometries in L(F, F) such that:

(i) o(a) —vim(a)v, € K(F) for all a € A and n € N;
(ii) |lo(a) —vim(a)v,| — 0 as n — oo for all a € A.
We want something slightly stronger.

Definition 2.2. A representation m : A — L(F') is strongly absorbing (for
the pair (A, B)) if (7, F') is the infinite amplification (¢%, E*) of an absorbing

representation (o, E).

Remark 2.3. If (w, F) is an infinite multiplicity (for example, strongly ab-
sorbing) representation then there we can write it as an infinite direct sum
of copies of itself. It follows that there is a sequence (s,)x_; of isometries
in £(F) with mutually orthogonal ranges, that commute with the image of

9Thomsen’s definition is a little more restrictive: he insists that B be stable, and that
the B-modules used all be copies B ® K(¢?). Thanks to a combination of Kasparov’s
stabilization theorem [12, Theorem 2] and Remark A.16 below, our extra generality makes
no real difference.
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the representation, and have sum Y, s,s% that converges strictly'’ to the
identity.
In [25, Theorem 2.7], Thomsen shows that an absorbing representation

of A on /2 ® B always exists. The following is therefore immediate from the
fact that ((* ® B)* ~ (*® B.

Proposition 2.4. There is a strongly absorbing representation of A on (> ®
B. O

The point of using strongly absorbing representations rather than just
absorbing'! ones is to get the following lemma.

Lemma 2.5. Let 7 : A — L(F) be a strongly absorbing representation, and
let 0 : A— L(E) be a ccp map. Then there is a sequence (vy,) of isometries

in L(E, F) such that:
(1) o(a) —vin(a)v, € K(E,F) for allae A and n € N;
(i1) |lo(a) —vim(a)v,| — 0 as n — w0 for all a € A;
(111) vivy, =0 for all n # m.

Proof. Let (m, F') = (0, G*) for some absorbing representation (6, G). Let
(w,) be a sequence of isometries in L£(F,G) with the properties as in the
definition of an absorbing representation for o. For each n, let s, € L(G, F)
be the inclusion of G in F as the n'" summand, and set v, := s,w, € L(E, F).
It is straightforward to check that (v,) has the right properties. O

We will need the following result, which is implicit'? in [6].

0For the strict topology coming from the identification £(F) = M (K(F)). As the
partial sums are uniformly bounded, we may equivalently use the topology of pointwise
convergence as operators on F'.

'We do not know that the lemma fails for absorbing representations, but cannot prove
it either.

121t is also explicit in [8, Theorem 2.6], but with 7 only assumed absorbing, not strongly
absorbing. There seems to be a gap in the proof of that result. As a result, it seems to
be necessary to assume all absorbing modules used in [8] are actually strongly absorbing.
None of the results of [8] are further affected if one does this.

11



Proposition 2.6. Let m1 : A — L(F) be a strongly absorbing represen-
tation. Then for any ccp map o : A — L(F) there is an isometry v €
Cuw([1,00), L(F, E)) such that v*m(a)v — o(a) € Co([1, ), K(F)).

Moreover, if o : A — L(F) is also a strongly absorbing representation,
then there is a unitary u € Cyp([1,0), L(F, E)) such that u*m(a)u — o(a) €
Col[1, ), K(F)).

We will need two lemmas. The first is a well-known algebraic trick.

Lemma 2.7. Let 7 : A — L(F) and 0 : A — L(F) be representations,
and v € L(E,F) be an isometry. If v e Cyu([1,0),L(F, E)) is such that
v¥*r(a)v — o(a) € Co([1,0),K(F)) for all a € A, then w(a)v — vo(a) is an
element of Cy([1,0), K(F, E)) for all a € A.

Proof. This follows from the fact that
(r(a)v —vo(a))*(w(a)v —vo(a))
equals
v*r(a*a)v — o(a*a) — (v (a*)v — o(a*))o(a) — o(a®)(vim(a)v — o(a))
for all a € A. O

The second lemma we need is [7, Lemma 2.16]; we recall the statement
for the reader’s convenience but refer to the reference for a proof.

Lemma 2.8. Let 7 : A — L(E) and o0 : A — L(F) be representations. Let
o® A — L(F*) be the infinite amplification of E, and let w € L(F*, F &
F*) be defined by (&1,862,&3...) — & @ (&9,&3,...). Then for any isometry
ve L(F® FE), the operator

u:=(lp@v)wv* + 1g —vv* e LIE,F®FE)
is unitary and satisfies
lo(a) @ 7(a) — um(a)u™| < 6jvo™(a) — w(a)o] + 4Jvo™(a®) — m(a®)v].

Moreover, if vo®(a) — w(a)v € K(F*,E) for all a € A, then o(a) ® 7(a) —
ur(a)u* e K(F@®FE) for allace A. O

12



Proof of Proposition 2.6. Say first 0 : A — L(F) is ccp. Let (v,) be a
sequence of isometries in L(F, F) as Lemma 2.5. For each n > 1 and each
t € [n,n + 1], define

v = (n+1—1)Y20, + (t —n)"?v,4

Then the resulting family v := (v;)se[1,00) is an isometry in Cy([1, 00), L(F, E))
such that v*7(a)v —o(a) € Cy([1,0), KL(F)) for all a € A; we leave the direct
checks involved to the reader.

Assume now that ¢ : A — L(F) is also a strongly absorbing repre-
sentation. Using the first part of the proof applied to the infinite ampli-
fication 0® @ A — L(F%*), we get v € Cul[l,0),L(F®, E)) such that
v*r(a)v — 0% (a) € Co([1,00), L(F*)) for all a € A. Lemma 2.7 implies
that 7(a)v — vo®(a) is an element of Cy([1,00), L(F*, E)) for all a € A.
Building a unitary out of each v; using the formula in Lemma 2.8 gives now
a unitary ug € Cyp([1,0), L(F, F @ F)) such that o(a) ®7(a) —upm(a)u}; €
Co([1,0), K(FDE)) for all a € A. The situation is symmetric, so there is also
a unitary up € Cy([1,0), L(F, F ® E)) such that o(a) ®7(a) — upm(a)ul €
Co([1,0), K(F @ E)) for all a € A. Defining v = ukup, we are done. O

We need one more technical result about strongly absorbing represen-
tations. The statement and proof are essentially'® the same as a result of
Dadarlat [5, Proposition 3.2]. We give give a proof for the reader’s conve-

nience.

Proposition 2.9. Let 7 : A — L(B® (?) be a strongly absorbing represen-
tation of A on the standard Hilbert B-module. Let C' be a separable nuclear
C*-algebra, and let C @ B® (? denote the C @ B-Hilbert module given by the
exterior tensor product. Then the amplification 1c @ m: A — L(C ® B® (?)
is strongly absorbing for the pair (A,C ® B).

Proof. As 1c¢®m is isomorphic to the infinite amplification of itself, it suffices
to prove that 1c®m is absorbing. Let (1c®7)" : AT — L(C® B®/(?) be the

13The main difference is that we drop a unitality assumption on C. This will be useful
below.
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canonical unital extension of 1¢ ® 7 to the unitization A* of A (even if A is
already unital). Using Kasparov’s stabilization theorem [12, Theorem 2|, the
equivalence of (1) and (2) from [25, Theorem 2.5], [25, Theorem 2.1], and the
canonical identifications C® BQK(£?) = K(CRB®(?) and L(CQ® BR?) =
M(K(C® B®¢?)), it suffices to show that if o : AT - C® BQK(?) is any
ccp map then there is a sequence (w,) in £(C' ® B ® K(¢?)) such that

lim |o(a) —wi(1®@m)* (a)w,| =0 forall ae A"

n—0o0

and such that
lim [|w*b| =0 forall be C®B® K((?).
n—0oo

Let 6 : C* — B(f?) be a unital representation of the unitization of C' such
that 6~ 1(IC(¢?)) = {0}. Let ¢ : C* — L(C) be the canonical multiplication
representation. Kasparov’s version of Voiculescu’s theorem [12, Theorem 5]
combined with nuclearity of C* imply that there is a sequence (v, ())n—; of
isometries in £(C,CT ® ¢?) such that

e(c) — U:‘L’(O)(chr ®6(c))vn) =0 as n— oo

for all c € C'*. Perturbing v, o) slightly, we may assume that actually vy, ()
has image in C* ® ¢*{1, ..., k(n)} for some k(n).

Let (en,) be an approximate unit for C. We may consider multiplication
by e, as defining an operator in Lo(C* ® H,C ® H)) for any Hilbert space
H, and therefore the product operators ep,v, @) make sense in £(C,C ®
(*{1,...,k(n)}). For a suitable choice of m(n) we have that if v, 1) :=
Em(n)Vn,(0) then

Je(€) = v 1) (10 @ () o] — 0 a5 1 — o0

for all c € C. Let 6, : C — K(¢*{1,...,k(n)}) be the compression of § to
the first n basis vectors. Note that by choice of k(n) we have v;(l)(lc ®
(5(0))%7(1) = v;’;’(l) (1(; ® 5n(c))vn7(1) for all n, and thus that

le(c) = vy 1) (1o ® dn(c)) vy = 0 as n — oo

14



for all ce C.
Define

Ay =0, ® lpgie) : C®BRK((?) —> K(*{1,....,k(n)}) @ B& K(£?).
Define vy, (2) 1= Un,(1) ® 1pgi(2), SO
Un,(2) € Legpere) (CRBRK(?), C®F{1, ... k(n)} @ BRQK(£?)).
Note then that
e — U:’(Z)(lc ® An(c))vm(Q)H —0 as n— o
for all ce C ® B® K(¢?) and so in particular
lo(a) — v;’;@)(lc ® An(a(a)))vn’@)H —0 as n— o

for alla e A™.

To complete the proof, use an identification K(£2{1,...,k(n)}) ® K(£?) =
K(£?) to give an isomorphism ¢ : K(¢*{1,...,k(n)}) @ BQK({*) - BRQK((?).
Note that as 7 is absorbing there is a sequence (v, (3))r; in L(B ® K(£?)
such that

)

|6(An(o (@) = v @ym(@)uny] =0 as 0o

for all a € AT (compare the equivalence of (1) and (2) from [25, Theorem 2.5]
again). As 7 is strongly absorbing, we may moreover assume that the vn 3)
satisfy v}, ;b — for all be B® KC(¢?) by ensuring that for all m, v, @3 "(3)
is orthogonal to any element of B® KC(¢*{1,...,m}) for all large n. It is then
not too difficult to check that we can choose I(n) such that if we set

= (Le ® vy (3))Un,(») € LIC® BRK(Y)),

then (w,) has the right properties. O
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3 Localization algebras

As usual, A and B refer to separable C*-algebras throughout this section.
In this section, we define localization algebras following [8], and show that
uniform continuity can be replaced with continuity in the definition without
changing the K-theory. This result was first observed by Jianchao Wu (with
a different proof), and we thank him for permission to include it here.
The following definition comes from [8, Section 3]. We use slightly dif-
ferent notation to that reference to differentiate between the continuous and

uniformly continuous versions.

Definition 3.1. Let 7 : A — L(FE) be a representation. Define Cp () to be
the C*-algebra of all bounded, uniformly continuous functions b : [1,0) —
L(E) such that [b;,a] — 0 for all a € A, and such that ab; is in IC(E) for all
aeAandallte[l,00). We call Cp,,(m) the localization algebra of .

The following is'* [8, Theorem 4.4].

Theorem 3.2. Let 7 : A — L(E) be a strongly absorbing representation.
Then there is a canonical isomorphism KK,(A, B) — K(CpL(7)). O

Definition 3.3. Let 7 : A — L(F) be a representation of A on a Hilbert
B-module. Define Cf, .(7) to be the C*-algebra of all bounded, continuous
functions b : [1,00) — L(F) such that [b;, a] — 0 for all a € A, and such that
ab; is in IC(F) for all a € A and all ¢ € [1,0).

Clearly there is a canonical inclusion Cf, ,(7) — Cp (7). Our main goal
in this section is to prove the following result.

Theorem 3.4. Let m : A — L(F') be an infinite multiplicity (in particular,
strongly absorbing) representation of A on a Hilbert B-module. Then the

canonical inclusion Cp, (1) — C, .(7) induces an isomorphism on K-theory.

We will need two preliminary lemmas. The first of these follows from
standard techniques: compare for example [11, Proposition 4.1.7].

14 As explained in footnote 12, the cited result should be stated with the assumption
that the representation is strongly absorbing, not just absorbing.
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Lemma 3.5. There is a function w : [0,00) — [0,0) such that w(0) = 0,
such that %i_r)réw(t) =0, and with the following property. Say D is a C*-
algebra, and say p°,p' € C([0,1], D) are projections with the property that
Ip} —pi|l < 1/2 for allt € [0,1]. Then there is a homotopy (p*)sefo,1] connect-
ing them, and with the property that |p* — p*| < w(|s — §'|) for all distinct
s, s €0,1]

Proof. We will work in C'([0, 1], D), where D" is the unitization of D. Fix
t € [0, 1], and define

z = pp) + (1 —py)(1 = pY).

Then one checks as in the proof of [11, Proposition 4.1.7] that |1 —z;| < 1/2.
For s € [0, 1], define 2} := s1 + (1 — s)x, which also satisfies |1 — xf| < 1/2.
Hence each zj is invertible, and the norm of its inverse is at most 2 by the
usual Neumann series representation. Define moreover u$ := x{((x3)*z) 2,

which is unitary. One computes as in the proof of [11, Proposition 4.1.7] that
wp; ()" = ;.

It is then not difficult to check that defining pf := uip?(uf)* gives a path
(p*)sefo,1] With the right property. O

For the statement of the next lemma, recall that if C' and D are C*-
algebras equipped with surjections 7¢ : C — @ and 7p : D — @ to a third
C*-algebra @, then the pushout is the C*-algebra P := {(¢,d) € C@® D |

mo(c) = mp(d)}. Such a pushout gives rise to a canonical pushout square

P——sC (4)

j Lﬂc

D——@Q

where the arrows out of P are the natural (surjective) coordinate projections.

See for example [28, Proposition 2.7.15] for a proof of the next result.
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Lemma 3.6. Given a pushout diagram as in line (4) above, there is a siz-

term exact sequence

K0<P) —Ko(C)® KU(D> - KO(Q)

T |

Kl(Q)<—K1(C) @Kl(D) <—K1(P>

of K -theory groups. The diagram is natural for maps between pushout squares
in the obvious sense. [

Before the proof of Theorem 3.4, we record two more well-known K-
theoretic lemmas. See for example [28, Proposition 2.7.5 and Lemma 2.7.6]
for proofs'®.

Lemma 3.7. If a, 3 : C'— D are =-homomorphisms with orthogonal images,
then a+ 8 : C'— D is also a =-homomorphism, and (a+ )y = ay + By. O

Lemma 3.8. Let o, : A — B be =-homomorphisms, and assume that there
is a partial isometry v in the multiplier algebra of B such that a(a)v*v = a(a)
foralla € A, and so that va(a)v* = f(a) for alla € A. Then o and 5 induce
the same maps on K -theory. [

Proof of Theorem 3.4. Let E :=| | _,[2n,2n+1]and O := | |,.,[2n—1,2n],
equipped with the restriction of the metric from [1,00) . Let Cr,(m; E)
denote the collection of all bounded, uniformly continuous functions b : £ —
L(F) such that ab; € K(F) for all a € A, and such that [a,b;] — 0 as
t — 0. Define Cp, ,(7; O) and Cp ,(7; EnO) similarly, and define Cy, .(7; E),
CL.e(m;0), and Cf.(7;0 n E) analogously, but with ‘uniformly continuous’

replaced by ‘continuous’. Then we have a commutative diagram of pushout

15The statement of [28, Proposition 2.7.5] has a typo: wvv* should be v*v where it
appears there.
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squares

Cru(m) Cru(m E)
~_ o
CLe(m) l CLe(m E)
Cru(m; O) Cru(m; En O)
\ \
CL.e(m; O) CLe(m EnO)

where the diagonal arrows are the canonical inclusions, and all the other
arrows are the obvious restriction maps. Using Lemma 3.6 and the five
lemma, it thus suffices to prove that the maps Cp, ,(7; G) — Cp.(7; G) induce
isomorphisms on K-theory for G € {E,0,E n O}. For E n O, which just
equals N n [1,00), this is clear: the map is the identity on the level of C*-
algebras as there is no difference between continuity and uniform continuity
in this case. The cases of E' and O are essentially the same, so we just focus
on .

Let now Ey := F n 2N = {2,4,6,...} be the set of positive even num-
bers. Then we have a surjective *-homomorphism Cp ,(7; E) — Cp . (7; En)
defined by restriction, and similarly for C .; write C7 ,(m; E) and C} (7; E)

for the respective kernels. Then we have a commutative diagram

0—C? (1 E) — Cpu(m; E) — Cpy(m; Exy) —0

| | |

0——=C (75 E) —— Co(m; E) — Ce(m; Ey) —=0

of short exact sequences where the vertical maps are the canonical inclusions.
The right hand vertical map is the identity as there is no difference between
continuity and uniform continuity for maps out of Ey. Hence by the five
lemma and the usual long exact sequence in K-theory, it suffices to show

that the left hand vertical map induces an isomorphism on K-theory. For
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r € [0,1] let us define a *-homomorphism h, : C} ,(m; E) — C} ,(m; E) by
the following prescription for b € Cgu(ﬂ; E). For t € [2n,2n + 1], we set

(hr b)t = b2n+r(t72n)

(in other words, h, contracts [2n,2n + 1] to {2n}). Using uniform continuity,
(hr)refo,1) is a null-homotopy of C? , (7; E), and therefore K, (C? ,(; E)) = 0.
It thus suffices to show that K, (C} (m; E)) = 0, which we spend the rest of
the proof doing.

We will focus on the case of Ky (which is in any case all we use in
this paper); the case of K; is similar. Take then an arbitrary element
z € Ko(Cp (m; E)), which we may represent by a formal difference z =
[p] — [1x] where p is a projection in the m x m matrices M,,(C? .(m; E)*)
over the unitization C7 (7; E)* of Cp .(m; E) for some m, and 1;, € M,,(C) <
M., (C (75 E)*) is the scalar matrix with 1s in the first & diagonal entries
and Os elsewhere for some k& < m. Without loss of generality may think of p

as a continuous projection-valued function
p: E— M, (L(F))

such that a(p — 1) € M,,(IC(F)) for all a € A (here we use the amplification
of the representation of A to a representation on M,,(L(F')) to make sense
of this), such that [a,p;] — 0 for all a € A, and such that py, = 1 for all
n e N.

Now, for each n, the restriction p|[2,, 2n+1] is uniformly continuous, whence
there is some r,, € (0, 1) such that if ¢, s € [2n,2n + 1] satisfy [t —s| < 1 —1,,
then ||p; — ps|| < 1/2. For each | € N U {0}, define p) : E — M,,(L(F)) to
be the function whose restriction to [2n,2n + 1] is defined by

M ._
Pt = Pont(t—2n) ()t

Fix a sequence (s;);2, of isometries as in Remark 2.3 and consider the formal

oo o]
Top 1= [Zslp(l)sfl — [Zsllks;"]

1=0 1=0

difference
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where the sum converges striclty in M,,(L(F)) = L(F®™) pointwise in ¢ (we
are abusing notation slightly: we should really have replaced s; by 1, ) ®
s1). Asr, <1 and as py, = 0 for each n, we see that for any ¢, pgl) -1, —0
as [ — oo; it follows from this and the fact that each s; commutes with the
representation of A that x4, gives a well-defined element of Ko(C? (7; E)).

Now, let us consider the element x4, + 2 of Ko(C? .(7; E)). We claim this
equals z,.. As Ky is a group, this forces z = 0, and thus Ko(C? (7 E)) = 0
as required. Indeed, first note that conjugating by the isometry

oo
. *
s = Z 51418
1=0

in the multiplier algebra of C’gc(w; E) and applying Lemma 3.8 shows that

o0 o]
Top = [Zslp(ll)s?‘] — [Zsllksf].

=1 =1

The choice of the sequence (r,,) and Lemma 3.5 guarantees the existence of
a homotopy between p!~1) and p® for each [ > 1, and moreover that these

homotopies can be assumed equicontinuous as [ varies. It follows that

o0 0
T = [Zslp(l)sfl — [Zsllks;"] (5)
=1 =1

On the other hand, applying Lemma 3.8 again, we have that

x = [sopsg] — [solksy]-

Hence combining this with line above (5) and also Lemma 3.7

o0
T+ o = [Sopsg] — [Solksg] + [Zslp D *] — [Zsllks?‘]
=1
o0
= [Zslp(l)s;“] — [Zsllksf‘]
1=0 =0

:'T(X)

and we are done. O
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We finish this section with some technical results that we will need later.
The first goal is to show that K, (Cp (7)) only really depends on information
‘at t = o0’ in some sense. This is made precise in Corollary 3.11 below, but

we need some more notation first.

Definition 3.9. Let 7 : A — L(F) be a representation of A. Define
Iy .(m) to be the ideal in Cp.(m) consisting of all functions b such that
ab € Cy([1,0),K(E)) for all a € A. Define Qr(n) := Cp.(m)/IL.(7) to
be the corresponding quotient.

Lemma 3.10. Let m : A — L(F) be an infinite multiplicity representation
of A. Then I, .(m) has trivial K -theory.

Proof. Set Iy, () := Cp(m) n I (7). The same argument in the proof of
Theorem 3.4 shows that the inclusion Iy, ,(7) — I .(7) induces an isomor-
phism on K-theory. It thus suffices to prove that K, (I ,(7)) = 0, which we
now do.

Let (sn)i_, be a sequence of isometries in £(F) that commute with A,
and that have orthogonal ranges as in Remark 2.3. We regard each s,, as an
isometry in the multiplier algebra of I, ,(7) by having it act pointwise in t.
Define

vidpu(m) = Ipu(m), b sobsg,

which is a *-homomorphism that induces the identity map on K-theory by
Lemma 3.8. On the other hand, for each s > 0, define a *-endomorphism a;
of Iy, (m) by the formula a(b); := byys. Note that for each b € L(F), the

sum
0
Z Spbsy
n=1

converges in the strict topology of L(E) = M(KC(E)). It is therefore not too
hard to see that we get a *-homomorphism

@ Ipu(m) = Inu(m),  a(d) = > snan(b)sh

(the image is in I, (7) as aby — 0 as t — o for all a € A, which implies
that for each fixed ¢ and any a € A, aa,(b;) — 0 as n — o). Now, the
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maps « and ¢ have orthogonal ranges, whence by Lemma 3.7 a + ¢ is also a
*~homomorphism, and we have that as maps on K-theory, a4ty = (s +t4).
Define s := Y 5,155 (convergence in the strict topology), which we think
of as a multiplier of I ,(7). Applying Lemma 3.8 again, we see that ¢ + «
induces the same map on K-theory as the map b — s(¢(b) + a(b))s*, which

is the map
o0

I () = Ip(m), b— 2 SnQtn_1(b)sk.

n=1
On the other hand, using that elements of I, ,(7) are uniformly continuous,

we get a homotopy

0

b— 2 SpOn_14r(b)sk, 1 €]0,1]

n=1

between this map and a. In other words, we now have that a, + t, = .
as maps on K -theory. This forces ¢, to be the zero map on K, (I (7))
However, we also observed already that ¢, is the identity map, so K (1L (7))
is indeed zero. ]

The following corollary is immediate from the six-term exact sequence in
K-theory.

Corollary 3.11. Let w: A — L(FE) be an infinite multiplicity representation
of A on a Hilbert B-module. Then the canonical quotient map Cyp .(7) —

Qr(m) induces an isomorphism on K -theory. O

We will need one more definition and lemma about the structure of

OL7C(7T).

Definition 3.12. Let 7 : A — L(F) be a representation of A on a Hilbert
B-module. Define

CLe(m K) := Cy([1,0), L(E)) n Cp (),

which is an ideal in Cp (7).
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Lemma 3.13. Let m : A — L(E) be a representation of A on a Hilbert
B-module. With notation as in Definitions 3.9 and 3.12, we have

CL7C<7T) = CL7C<7T; IC) + [L,c(ﬂ')-

In particular, the restriction of the quotient map Cp.(7) — Qr(m) to CL.(m; K)
18 surjective.

Proof. Let (h,) be a sequential approximate unit for A, and define h €
Cuw([1,0), A) by setting h; := (n+1—t)h,+(t—n)hy,4q for t € [n,n+1]. Then
a direct check using that [a, h] € Cy([1,0), A) for any a € A shows that h de-
fines a multiplier of C (7). Moreover, for any b e Cr.(7), b = (1—h)b+ hb,
and one checks directly that (1—h)bis in I, .(7) and that kb is in Cf, .(7; K).
This gives the result on the sum, and the result on the quotient follows
immediately. O]

Our final goal in this section is to check that the isomorphisms from The-
orem 3.2 and Theorem 3.4 are compatible with a special case of functoriality
for K K-theory.

Let C' be a separable C*-algebra, and let ¢ : B — (' be a *-homomorphism.
Let E be a Hilbert B-module, and let £ ®4 C be the internal tensor product
defined using ¢, which is a Hilbert C-module. As discussed on [15, page 42]

there is a canonical *~-homomorphism
Q:L(E) - LIE®R,C), a—a®lc.

Let 75 : A — L(F) and 7¢ : A — L(F') be representations of A on Hilbert
B- and C-modules respectively.

Definition 3.14. With notation as above, a covering isometry for ¢ (with
respect to mp and 7¢) is any isometry v € Cy([1,0), L(E®4C, F)) such that

vi'me(a)v — @ omp(a) € Co([1,0), K(E Q@ C))

for all a € A.
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Lemma 3.15. With notation as above, if v is a covering isometry for ¢,
then the formula

9" : Cre(mp) = Cre(mo),  ¢"(b): = v (be)vf
gives a well-defined =-homomorphism. Moreover, the induced map

¢yt Ki(CLe(mg)) = Ki(CLo(me))

on K-theory does not depend on the choice of v. Finally, if ¢ is strongly
absorbing, then a covering isometry for ¢ always exists, and can be taken to
belong to Cyp([1,0), LIE®4C, F)) (i.e. to be uniformly continuous, not just
continuous).

Proof. Let v be a covering isometry for ¢. For notational simplicity, write

0 := ®omp. Using Lemma 2.7 we have that
ne(a)v —vo(a) € Co([1,0), K(E®y C, F))
for all a € A. Note that for a € A, be Cp.(7p)
mo(a)¢’(b) = (mc(a)v — vo(a))(@(b;))v" + v®(mp(a)b)v’;

using that ¢ takes IC(E) to K(E®4C) (see [15, Proposition 4.7]), this shows
that ma(a)@¥(b) € Cp([1,00), (F')) . Similarly,

[Tc(a), ¢ (b)] = (71'0(@)1) — va(a))@(b)v* +v®([r(a),b])v*
+0®(b) (v*7e(a) — a(a)v*),

whence [7¢(a), V()] € Co([1,00), K(F)). It follows that ¢" is indeed a well-
defined *-homomorphism Cp, .(7p) — CL.(7¢).

Let now v, w be possibly different covering isometries for ¢. Using similar
computations to the above, one checks that wv* is an element of the multi-
plier algebra of Cp .(m¢) that conjugates the »-homomorphisms ¢* and ¢" to
each other. The fact that ¢! = ¢¥ as maps K,(CL.(75)) = K.(CL.(7¢))
follows from this and Lemma 3.8.

Finally, if ¢ is strongly absorbing, then covering isometries exist, and

can be assumed uniformly continuous, by Proposition 2.6. ]
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Definition 3.16. Let 75 : A — L(F) and 7o : A — L(F) be representa-
tions of A on a Hilbert B-module and Hilbert C'-module respectively, with ¢
strongly absorbing. Let ¢ : B — C be any *-homomorphism. Then Lemma
3.15 gives a well-defined homomorphism K, (Cy, .(7p)) — K« (Cp (7¢)), which

we denote ¢,.

On the other hand, for a =-homomorphism ¢ : B — C, let us write
¢« + KK(A,B) - KK(A,C) for the usual functorially induced map on
K K-theory. The following lemma gives compatibility between these two

maps.

Lemma 3.17. With notation as above, assume that both wg and mc are
strongly absorbing, and let KK(A,B) — Ko(CL.(mp)) and KK(A,C) —
Ko(Cpo(me)) be the isomorphisms from Theorem 3.2 and Theorem 3.J. Then
the diagram
KK(A, B) —_— KO(CL,C(WB))
l¢* l¢*
KK(A,C)— Ky(CL.(mc))
commutes.
Proof. The proof is unfortunately long as there is a lot to check, but the
checks are fairly routine. We recall first the precise form of the isomorphism
KK.(A B) - K.CpL.(mp)) of Theorem 3.2. It is a composition of the
following maps (see also [8, Definition 3.1] for the various algebras involved).
(i) The Paschke duality isomorphism P : KK (A, B) — K1(D(ng)/C(7p))
of [25, Theorem 3.2], where D(7p) := {be L(E) | [b,a] € K(F) for all a €
A}, and C(mg) :={be D(np) | abe K(E) for all a € A}.

(ii) The map on K-theory ty : K1(D(7p)/C(7wg)) — Ki(Dr(ng)/Cr(7g))
induced by the constant inclusion ¢ : D(wg) — Dy (wg), where Dyp(mg) 1=
Cub([l, OO),D(WB)) and CT(T('B) = Cub([l, OO),C(WB)).

(iii) The map on K-theory ;' : K1(Dr(7p)/Cr(7p)) — Ki(Dr(mp)/CLu(75))
which is induced by the inverse (it turns out to be an isomorphism of C*-
algbras) of the map 0 : Dr(ng)/Cr(rg) — Dr(np)/CLu(7p) induced
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by the inclusion Dy (np) — Dr(wg), where Dp(7wg) := {b € Dy(mp) |
[a,b;] = 0 as t — oo for all a € A}.

(iv) The usual K-theory boundary map 0 : Ky(Dr(7p)/CrLu(7)) = Ko(CLu(7B)).

(v) The isomorphism ky : Ko(CLu(m5)) — Ko(CLe(mp)) of Theorem 3.4

induced by the canonical inclusion.

Now, if v is a uniformly continuous covering isometry for ¢, then one sees
from analogous arguments to those given in the proof of Lemma 3.15 that
the formula

¢"(b)y := v, P(by)vy

from Lemma 3.15 also defines *-homomorphisms

b { Dy (w5)/Cru(mp) = Dulc)/Crulre) |
Dr(np)/Cr(mp) — Dr(7e)/Cr(mc)

Moreover, the formula

¢ (b) := v1®(b)vy
defines a *-homomorphism D(ng)/C(ng) — D(nc)/C(np). Putting all this
together, we get a diagram

—1
L n o r
K1 (D(rp)/C(rp)) — s K1(Dr(np)/Cr(r5)) —— K1(DL(15)/CL,u(7B)) ——> Ko(CrL,c(r5)) ——> Ko(CpL,o(r5))

jd):‘l jdﬁg j@ Ld»; Ld»:,;
. ngt

K1 (D(nc)/C(rc)) —> K1(Dr(nc)/Cr(nc)) —> K1(Dr(7¢)/CL,u(7c)) —s Ko(Cr,c(mc)) l> Ko(CL,c(mc))
(6)

We claim that this commutes. Indeed, the first square commutes as ¢, is an
isomorphism on K-theory ([8, Proposition 4.3 (b)]), whence its inverse on the
level of K-theory is the map induced by the evaluation-at-one homomorphism
e: Dr(rg) — D(mp), and the diagram

Ki(D(np)/C(7p)) <5~ K1 (Dr(7p)/Cr(np))

jd&? jdﬁi

Ki(D(re)/C(rc)) <o Ki(Dr(me)/Cr(me))
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commutes on the level of *-homomorphisms. The second square in line (6)

commutes as the diagram

Ki(Dr(mp)/Cr(tg)) <5~ Ki(Dr(75)/CrLu(TB))

| |

K1(Dr(ne)/Cr (7)) <= K1(Dr(ne) /Cru(me))

commutes on the level of *~-homomorphisms. The third square commutes
by naturality of the boundary map in K-theory. Finally, the fourth square
commutes as it commutes on the level of *-homomorphisms.

Now, the diagram in the statement in the lemma ‘factors’ as the rectangle
from line (6), augmented on the left with the diagram below

KK(A, B) == K\(D(r3)/C(rp)) (7)

l¢>* l‘ﬁ:}

KK(A,C) L= K\(D(r¢)/C(ne))

involving the Paschke duality isomorphism. To complete the proof, it suffices
to show that this commutes.

For this, we use the ungraded picture of K K-theory, so a cycle for
KK(A, B) consists of a triple (o, G,w), where ¢ : A — L(G) is a repre-
sentation, and u € L(FE) is such that a(uu* —1), a(u*u—1), and [a, u] are all
in K(G) for all a € A. In this picture, the Paschke duality isomorphism (see
25, Section 3] and [24, Remarque 2.8]) can be described as follows. Take a
cycle (0,G,w) for KK (A, B). Adding the degenerate cycle (np, E, 1) gives
an equivalent cycle (c @7, GO E,wd1). Asin [25, Theorem 2.5, condition
(3)] we may use that mp is absorbing to find a unitary U € L(G @ E, E)
such that U(o(a) ® mp(a))U* — wp(a) € K(F) for all a € A. We then get a

unitarily equivalent cycle
(Ulc@dnmp)U*, E,U(we 1)U")

for KK (A, B). The element U(w@®1)U* is then unitary in D(7p)/C(np) and
we define P[o, G, w] to be the class [U(w@1)U*]. This construction induces
the Paschke duality isomorphism.
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Now, to keep notation under control, let us start with an element of
KK (A, B) represented by a cycle of the form (7g, E, w) (such representatives
always exist). Then the ‘right-down’ composition

KK(A, B) = K\(D(r3)/C(rp))

g

K1(D(me)/C(mo))

from line (7) takes [7p, E, w] first to [w], and then to [v(w ® 1¢o)vf + (1 —
v,v5)]. On the other hand, the ‘down-right’ composition

KK(A,B)

A

KK(A,C)—=K,(D(rc)/C(nc))

from line (7) takes [7p, E,w] first to [75 ® 1¢, F ® C,w ® 1¢], and then
to [U((w ® 1¢) @ 1)U*], where U € L((E® C) @ F, F) is a unitary such
that U((mp(a) ® 1¢) ® mc(a))U* — mo(a) € K(F) for all a € A. Our task is
therefore to establish the identity

[U(w®1le) @ YUT] = [n1(w @ 1o)vr + (1 = v107)] (8)

in K1(D(rc)/C(me)).

Now, as (7¢, F') is strongly absorbing, it is equivalent to (r¢@®7no, FOF).
We may assume that the original isometry v € Cyp([1,0), L(E®C, F)) takes
values in the first summand above. It then follows that it s : ' - F @ F
is the isometric inclusion as the second summand that we have that s takes
image in (1 — v1vf)F, and that s*(mc(a) @ me(a))s = mo(a) for all a € A.
One then checks that V := (s@w,)U* € LL(FE) defines a multiplier of D(m¢)
(and therefore of D(m¢)/C(nc)). We compute that

VIU(w®1le) @1 UHVF 4+ (1 = VV*) = v (w® Lg)vf + (1 — vgv]).

On the other hand, the *-homomorphism ady : D(7¢)/C(ne¢) — D(ne)/C(me)
induces the identity on K-theory by Lemma 3.8, and is concretely given by
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the formula
Ki(D(mc)/C(mc)) — Ki(D(nc)/C(me)),  [u] = [VuV* + (1= VVH)].

We have thus established the identity in line (8), which completes the proof.
[

4 Paths of projections

Our goal in this section is to introduce a new model of K K-theory based
on paths of projections. Throughout this section, A and B are separable
C*-algebras.

We will need some more terminology about representations.

Definition 4.1. Let 7 : A — L(FE) e a representation of A on a Hilbert
B-module.

e 7 is graded if it comes with a fixed decomposition (7, F) = (mg @
71, Fo @ Ey) as a direct sum of two subrepresentations. If 7 is graded,
the neutral projection is the projection e € L(F) onto the first summand
in F=FEy®E.

o 7 is substantial if it is graded, if (7o, Ey) = (71, E1) in the given decom-
position, and if (7, Fy) comes with a fixed decomposition (7, Fy) =
(6%, F*) as an infinite amplification of another representation.

o 7 is substantially absorbing if it is substantial, and if in addition (g, Eo)
is strongly absorbing.

Note that a representation (m, E) is substantial if and only if
(1, E) = (lp2gper @0,CCPQLRQFPRF) (9)

(a tensor factor of £2 comes from the infinite multiplicity assumption, and
we use an identification 2 = (2 ® ¢? to split off an extra tensorial factor of

¢%). We record some useful observations arising from this as a lemma.
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Lemma 4.2. Let 7 : A — L(E) be a substantial representation. Arising

from a decomposition as in line (9), there are unital inclusions
My(C) € L(E) and B({*) < L(E)
as the the C*-subalgebras
My(C) ® lpgrer  and 12 @ B(£?) ® 1pgr
respectively. These inclusions have the following properties:
e The neutral projection corresponds to the element (é 8) € M,(C).
e The subalgebras B((*) and My(C) of L(E) commute with each other,
and with A.
e The compositions
B(*) — L(E) — L(E)/K(E) and My(C) — L(E) — L(E)/K(E)

of these inclusions with the quotient map to the Calkin algebra are still

injective. [
The following is the key definition of this section.

Definition 4.3. Let 7 : A — L(FE) be a graded representation, and define
PT(A, B) to be the set of self-adjoint contractions p € Cy([1,0), L(E)) such
that:

(i) p—ee Gy([1, ), K(E))";
(i) for all a € A, [a,p] € Co([1, 0), L(E));

(iii) for all a € A, a(p® — p) € Co([1,0), K(E)).

16To make sense of this, we follow our usual conventions and identify e with a constant
function in Cy([1,00), L(E)).

31



We will sometimes drop the superscript “™” and just write “P(A, B)”
when it seems unlikely to cause confusion.

Our next goal is to define an equivalence relation on P™(A, B) such that
the equivalence classes give a realization of K K (A, B). For this (and other
purposes later), it will be convenient to introduce a parameter space Y.
Let then C' = Cy(Y) be a separable commutative C*-algebra: for our ap-
plications, Y will be one of the intervals [0,1] or (0,1), or the one-point
compactification N of the natural numbers. Let (7, E) be a representation of
A on a Hilbert B-module, and let C'® F denote the tensor product Hilbert
C' ® B-module. Let 1®7: A — L(C ® E) be the amplification of 7. If 7 is
graded then 1® 7 inherits a grading in a natural way, and so if we are in the
graded case we may consider P1®"(A C ® B).

The following lemma characterizes elements of P'®"(A,C' ® B) in terms
of doubly parametrized families (pf)ie[1,00),yey -

Lemma 4.4. Let (7, E) be a graded representation of A on a Hilbert B-
module. With notation as above, there is a natural identification between
elements p of P'®™ (A, C®B) and doubly parametrized families of self-adjoint
contractions (D} )ie[1,0)yey that define a function

p:[Lo) = G(Y,. L(E)), t— (y—pi)
with the following properties:
(i) the function p— e is in Cy([L, 50), Co(Y, K(E)));
(ii) [p,a] € Co([1, %), Cy(Y, L(E))) for all a € A
(iii) a(p® — p) € Co([1,0), Co(Y, K(E))) for all a € A.

Proof. An element of P'®"(A, C'® B) is a function p : [1,0) —» L(C ® F)
satisfying the conditions of Definition 4.3. Using the canonical identifications

K(C®E) = C®K(E) = Cy(Y,K(E))

and the fact that p — e € Cy([1,0),C(E)), we identify p with a function
p: [1,0) = Cu(Y,L(E)) (with image in the subset Cy(Y,K(E)) + {e} <
Cy(Y, L(FE))). The remaining checks are direct. O
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Definition 4.5. Elements p° and p' of P™(A, B) are homotopic if (with nota-
tion as in Lemma 4.4) there is an element p = (p)se[1,00),5e[0,1] In P®" (A, C[0, 1]®
B) that agrees with p° and p' at the endpoints. We write p° ~ p' if p° and

p* are homotopic, and write K K3 (A, B) for the quotient set P™(A, B)/ ~.

We will need the following elementary lemma a few times, so record it
here.

Lemma 4.6. Say p and q are elements of P™(A, B) such that p, —q; — 0 as
t — 0. Thenp ~q.

Proof. A straight line homotopy (sp + (1 — 5)q)se[0,1] Works: we leave the
direct checks involved to the reader. ]

In order to define a semi-group structure on K K% (A, B), we assume 7
is substantial as in Definition 4.1, and fix a tensorial decomposition as in
line (9) (which will remain fixed for the rest of the section). Fix also two
isometries s; and sy in B(¢?) that satisfy the Cuntz relation s;s¥ + sos5 = 1.
Using the canonical (unital) inclusion B(¢*) < L(F) from Lemma 4.2, we
think of these isometries as adjointable operators on E that commute with
A < L(F) and with the neutral projection e € L(F).

Lemma 4.7. Let 7 : A — L(FE) be a substantial representation. Then with

notation as above, the operation defined by

[p] + [4q] := [s1psT + s2455]

makes K K% (A, B) into an abelian semigroup. The operation does not depend
on the choice of s1, sy within B((?).

Proof. As the unitary group of B(£?) is connected (in the norm topology),
conjugation by a unitary in B(¢?) induces the trivial map on KK%(A, B).
Hence conjugating by the unitaries s;s5 + 5257 and s15157 + 51525785 + 525555
show that the operation is commutative and associative. On the other hand,
if t1,ty € B(£?) also satisfy the Cuntz relation, then conjugating by the uni-
tary sit} + sot5 shows that the pairs (si,s2) and (1,12) induce the same
operation on KK} (A, B). O
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Our next goal is to show that the semi-group K K7 (A, B) is a monoid. We
first state a well-known lemma about paths of projections in a C*-algebra.
It follows from the arguments of [11, Proposition 4.1.7 and Corollary 4.1.8],

for example.

Lemma 4.8. Let I be either [a,b] or [a,) for some a,b € R, and let
(pe)ier be a continuous path of projections in a C*-algebra D. Then there is
a continuous path of unitaries (uy)wer in D such that u, = 1, and such that
Pt = wpgu; for all t. O

Lemma 4.9. Let 7 : A — L(FE) be a substantial representation of A. Let p
be an element of P™(A, B), and let v be an isometry in the canonical copy of
B((?) < L from Lemma 4.2. Then the element

q:=vpv* + (1 —wvv¥)e € Cp([1, 20), L(E))
is in PT(A, B) and satisfies p ~ q.
Proof. For each n > 1, a compactness argument gives a finite rank projection
en € K(0%) < B(?) < L(E)

(where the inclusion is that from Lemma 4.2) such that

1

(1 - o - )l <
for all t € [1,n + 1]. Choose now a projection r; = e; such that r — e;
and 1 — r; both have infinite rank. Given r,, define r,,; to be the max of
r, and e,y 1. In this way we get an increasing sequence r; < ro < --- of
projections in B(¢?) such that r, > e, for all n and all m < n, and such
that r,, — e,, and 1 — r,, both have infinite rank for all n and all m < n. For
each n, (1—e,)r, and (1—e,)r, 1 are projections with the same dimensional
kernel and image as operators on (1 — e,)¢? and are thus connected by a
continuous path of projections (7{)sefnnt1] in B((1 — €,)0?). Set ry 1= e, + 1
for t € [n,n + 1]. In this way we get a continuous path of projections
= (T)teq1,00) in B(£?) = L(E) such that if |¢] is the floor function of ¢ then

1

(X =7r) (e =) < [(1=ep) (e =€) < Gk (10)
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and such that r, and 1 — r, have infinite rank as operators on ¢? for each t.
Note now that as r; commutes with e, line (10) implies in particular that
[, ]| < 2/[t]. Define p’ € Cyp([1,0), L(E)) by

Py = rpery + (1 —1p)e.

As ripyry — re is in K(E) for all ¢, we see that p, — e is in K(E) for all t.
Moreover,

Ipt = pell < e, ped | + 11 = re)(pe =€) =0 as ¢ — 0,

and so we that p’ := (p}) defines an element of P™(A, B) and that p’ ~ p by
Lemma 4.6.

Now, let v € B({?) = L(F) be an isometry as in the original statement.
Lemma 4.8 gives a continuous path (u})sef1,.0) of unitaries in B(¢?) such that
re = uyri(uy)* for all . Similarly, we get a continuous path of unitaries
(4 )ief1,00) such that uy (1 — vv* 4+ v(1 — r)v*)(uf)* = 1 —vv* + v(1 — ry)v*
for all t. Choose any partial isometry w € B(¢?) such that ww* = r; and

* (such exists as r; and 1 — vv* + v(1 — rq)v*

w*w =1 —vv* +v(l —r)v
are both infinite rank), and define w; := ujw(uy)*. Then (w¢)wn w0 is a
continuous path of partial isometries in B(¢?) such that w,w} = 1 —r, and

wiwy = 1 —vv* +v(1 — ry)v*. Define
uy := vry +wi € B(?) < L(E).

Then w = (ut)sef1,00) is @ continuous path of unitaries such that up'u* =
vp'v* + (1 —vv*)e. Let (h* : U(?) — U(L?))seo1] be a norm-continuous
contraction of the unitary group of ¢? to the identity element (such exists
by Kuiper’s theorem: see for example [4, Theorem on page 433]) and note
that the path (h°(u)p'h®(u*))seo,1] shows that p’ ~ vp'v* 4 (1 — vv*)e. In
conclusion, we have that

p~p ~ovpv*+ (1 —vv*e ~ovpv* + (1 —ovv)e

and are done. O
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Corollary 4.10. Let (m, E) be a substantial representation of A. Then for
any p € P™(A, B), we have s1psi + sqesy ~ p. In particular, the semigroup
KKZ%(A, B) is a commutative monoid with identity given by the class [e] of

the neutral projection.

Proof. Apply Lemma 4.9 with v = 51, whence 1 — vv* = 5553, and use that

So commutes with e. ]

Our next goal, which is the main point of this section, is to show that
if 7 is in addition substantially absorbing then KK7%(A,B) =~ KK(A, B)
(and therefore in particular that K K7%(A, B) is a group). We need some
preliminaries.

Let (7, E) be a substantial representation of A, and keep the fixed decom-
position of line (9) and the Cuntz isometries of Lemma 4.7. Lemma 3.13 gives
us a surjection p : Cp.(m K) — Qr(m). This induces a »-homomorphism
p: M(CL.(m;K)) — M(Qr(m)) on multiplier algebras, which is uniquely de-
termined by the condition that p(m)-p(b) = p(mb) for all m € M(Cy, .(m; K))
and b e Cp.(m; KC) (see [15, Chapter 2] for this). We define

M = p(M(Cl(m; K))), (11)
which is a unital C*-subalgebra'” of M(Qp (7)) containing Qr () as an ideal.
Lemma 4.11. With notation as in line (11) above, M has trivial K-theory.

Proof. The unital inclusion B(¢?) < L(F) of Lemma 4.2 induces a unital in-
clusion B(¢?) = M(Cy, .(m; K)) by having B(¢?)) act pointwise in the variable
t (this uses that B(¢*) commutes with A). This in turn descends to a unital
inclusion B(¢?) = M. Let (s,)®_, be a sequence of isometries in B(¢?) =€ M
with orthogonal ranges.

Consider the maps

vo: M(Cpo(m; K)) = M(CpL.(m:K)), b— sebsg,

17Tt could be all of M(Qr (7)), although this does not seem to be obvious: note that
the noncommutative Tietze extension theorem [15, Proposition 6.8] is not available here
as Cp,¢(m; K) is not o-unital.
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and .
ap s M(Cpe(m;K)) = M(Cre(m;K)), b Y] sabsh
n=1
(the sum converges in the strict topology of L(F), pointwise in ¢). The kernel
of the map p: M(CpL.(m; K)) — M is
{me M(Cp.(m;K)) | mbe Zy(n) for all b e Cyp, .(m; K)},

whence ¢y and gy descend to well-defined *-homomorphisms ¢, : M — M.

As « and ¢ have orthogonal ranges, Lemma 3.7 implies that a + ¢ is
a =-homomorphism and that as maps on K-theory, a, + tx = (a + ¢)s.
Moreover, conjugating by the isometry s := >, s,s%,, € B((?) = M (the
sum converges in the strong topology of B(£?)) and applying Lemma 3.8
implies that (o + ¢), = @, as maps on K-theory. We thus have

Qg+ by = (@ + 1)x = Qu,

whence ¢, = 0. However, ¢, is an isomorphism by Lemma 3.8 again, whence

K.(M) is zero as required. O

We need one more preliminary definition and lemma before we get to the
isomorphism K K7 (A, B) =~ KK (A, B).

Definition 4.12. For an ideal [ in a C*-algebra N, the double of I along N
is the C'*-algebra defined by

Dn(I):={(a,b)e N®N |a—be I}.
Note that Dy (1) fits into a short exact sequence
0——I—Dy(I)—=N——0 (12)

with arrows I — N and Dy(I) — N given by a — (a,0) and (a,b) — b

respectively.

Lemma 4.13. Say I is an ideal in a C*-algebra N, let Dn(I) be the double
from Definition 4.12, and assume that K.(N) = 0. Then Dy(I) has the
following properties:
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(i) The inclusion I — Dy(I) from line (12) induces an isomorphism on
K-theory;

(11) any class in Ko(Dn(I)) of the form |p,p| for some projection p €
M,(N) is zero;

(111) for any p,q] € Ko(Dn(I)), we have —[p,q]| = [q,p];

(v) any element in Ko(Dy(I)) can be written as [p, q] for some projection
(p,q) in some matriz algebra M,(Dy(I)).

Proof. Part (i) is immediate from the six-term exact sequence in K-theory.
Part (ii) follows as any such class is in the image of the map induced on
K-theory by the *-homomorphism

N — Dy(I), aw (a,a)

and is thus zero as K,(N) = 0. For part (iii), say [p,q] € Ko(Dn(I)) with

p,q € M,(N). Then [p,q] + [¢,p] = [pD q,qDp]. As p—qe M,(I), the
formula

/2] 25— p 0 cos(s) sin(s)) (g 0) [cos(s) —sin(s)
[0, 7/2] ((0 q) ’ (— sin(s) cos(s)) (0 p) (sin(s) cos(s) ))

defines a homotopy between (p@® ¢,q® p) and (p @ ¢, p @ q) passing through
projections in My, (Dy(I)). The latter defines the zero class in Ky by part
(ii), which gives part (iii). Part (iv) follows directly from part (iii). O

Here is the main result of this section.

Theorem 4.14. Let 7 : A — L(E) be a substantially absorbing represen-
tation on a Hilbert B-module E. Let M be as in line (11), Qp(mw) as in
Definition 3.9 and Dy(Qr(m)) be as in Definition J.12. Then the formula

KKp(A, B) = Ko(Dy(Qr(m))), [p] = [p:e]

defines an isomorphism of commutative monoids. In particular K K% (A, B)

1s an abelian group.
Moreover, there is a canonical isomorphism KK} (A, B) =~ KK(A, B).
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Proof. We first have to show that the map above is well-defined. It is not
difficult to see that if p € P™(A, B), then (p, e) is a projection in Dy (Q()).
For well-definedness, we need to show that if p® ~ p! in P7(A, B), then the
projections (p°, e) and (p',e) in Dy (Q (7)) define the same K-theory class.
Let then (p®)sefo,1] be a homotopy implementing the equivalence between p°
and p'. Let

l@n: A— L(C[0,1]® F)

be the amplification of 7 to the C[0,1] ® B-module C[0,1] ® E, and let
CpL(1® ) be the associated localization algebra. Note that p := (p*)se01]
defines an element of the multiplier algebra M (Cp (1 ® 7)) such that p — e
is in O .(1®m), and so that [p, e] is a well-defined class in Dy, (QL(1®@7)),
where M is defined analogously to M, but starting with 1 ® .

As E is (substantially) absorbing, Remark A.16 implies that it is isomor-
phic as a Hilbert B-module to 2 ® B. Hence we may apply Proposition
2.9 to conclude that 1 ® 7 is substantially absorbing, and thus there is an
isomorphism

KK(A,C[0,1]1® B) 5 Ko(CL.(1®)).

Let €%, ¢! : C[0,1]® B — B be given by evaluation at the endpoints. Lemma

3.17 then gives a commutative diagram

KK(A,C[0,1]® B) —= Ko(Cp.(t®T))

% 4

KK(A, B) = Ko(CrL.e(m))

for i € {0, 1}. Homotopy invariance of K K-theory gives that the maps €2, ¢! :
KK(A,C[0,1] ® B) —» KK(A, B) are the same, whence the maps €2, €}, :
Ko(Cr.(1®m)) = Ko(Cr.(m)) are too. On the other hand each € induces
maps € : Qr(1®7) — Qr(m) and € : Cr (1@ mK) — Cp.(m;K), and

therefore induces a map Dy (Qr(1 ® 7)) — Dy (Qr(1®m)). All this gives
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rise to a commutative diagram

CL’C(1®7T) ﬁ-QL<1®7T) ﬁDMC(QL(l ®7T))

)

Cp.e(m) Qr(m) Dy (Qr(m))

where the first pair of horizontal maps are the canonical quotients, and the

second pair are the inclusions a — (a,0). The horizontal maps induce iso-
morphisms on K-theory by Corollary 3.11 (first pair), and Lemmas 4.11
and 4.13 (second pair). Hence the maps €2, el : Ko(Dy. (Qr(1 ® 7)) —
Ko(Dp(Qr(m))) are the same. We thus see that

[p",e] = €lp.e] = elp.e] = [p', el

which is the statement needed for well-definedness.

We now show that the map in the statement it is a homomorphism.
Indeed, for p,q € P™(A, B), the element [s1ps} + saqsi| of KK (A, B) gets
sent to

* * * * * *
[s1ps] + 52qS5, €] = [s1ps] + $2qS5, s1€5] + sqess],

where we have used that sys} + s9s5 = 1 and that s;, s, commute with e. As
s1xs} is orthogonal to s ys3 for any x,y we have that

[s1pS] + 52qS5, s1€5] + sqess| = [s1psT, s1es]| + [52qS5, s2e55 ]
and as conjugation by s; and sy has no effect on K-theory by Lemma 3.8,
this equals

[p,e] + [g, €],

which is the sum of the images of [p] and [¢].

We now show that the map is surjective. Using Lemma 4.13, an arbitrary
element of Ko(Dy(Qr(m))) can be represented as a class [p,q] with p,q
projections in M, (M) for some n, and with p — ¢ € M,(Qr(7)). We have
that [1 —¢,1—¢| = 0 by Lemma 4.13, and thus [p,¢] = [p®1—¢,¢D1—q].

g 1—g¢q
l—=q¢ ¢

The matrix u = is a unitary in Ms, (M), whence conjugating
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by (u,u) we see that

[p,q] = [p®1—q,¢D1—q] = [u(p@q)u*, u(¢®1—q)u*] = [u(p®q)u*, 1,®0,],

where 1,, and 0,, are the unit and zero in M, (M). Choose now 2n isometries
V1, ooy Uny oony Vg 0 B(C? ® £2) € L such that 37, vvF = e and Y27 vof =
15,,. The matrix

V1 V2 -+ U2
o 0 --- 0

V= . . . . EMgn(M)
o 0 --. 0

is an isometry, whence conjugation by (v,v) induces the trivial map on
Ko(Dp(Qr(m))) by Lemma 3.8 and so

[ aq] = [UU(p@Q)U*'U*,U(ln@O)’U*] = [T®02n—176®02n—1]a

where r € M is a projection such that a := r — e is in Qp(7w). We may
lift @ to a self-adjoint element b € Cp.(m;K) by Lemma 3.13. Consider
the self-adjoint element (b + ¢, e) € Dy (r5x)) (CL.e(m; K)), which maps to
(r,e) € Dy (Qp(m)) under the *-homomorphism

Dy o)) (CLe(m; K)) — D (Qr(m))

induced by the quotient map Cp .(7; K) — Qr(7) of Lemma 3.13. Note that
if f: R — [—1,1] is the function defined by

1 t>1
f(t):: t -1<t<1
-1 t< -1

then in Dasc, (i) (CLe(m; K))
f(be) = (f(b+e), f(e) = (f(b+e)e),

and this element still maps to (r, e) by naturality of the functional calculus.
Set ¢ = f(b+e). Then c is an element of P™(A, B) such that [c,e] = [r,e] =
[P, q], so we are done with surjectivity.

41



To see injectivity, say [p] € KKJ(A, B) is such that [p,e] is zero in
Ko(Dp(Qr(m))). In particular, [p,e] = [e,e] by Lemma 4.13, and there-
fore there is a projection (qi,q2) € M, (Dn(Qr(7))) and a homotopy pry =

(Pfl))se[o,l] between (p@ ¢1,e@ ¢2) and (e D q1,e D ¢q2) in My 11 (D (Qr(m))).
We will manipulate this homotopy to build a homotopy between p and e in

PT(A, B).
e Replacing pay by pe) = pa) @ (g2, ¢1), we get a homotopy between
PO N D, e®gpdq)and (e®q D, e® @R ®q).

e As ¢ — qu € M, (Qr(m)), we get a homotopy

- . cos(s) sin(s)\ (g O cos(s)  sin(s)
(p®Q1®Q2, ®<_sin(s) cos(s)) (0 q1> (—sin(s) cos(s)))

between (p@Dq1 D gz, eDqaPq1) and (pB g1 g2, e®q1 Dq2), and similarly
between (e®q1Bqa, eDqa®qi) and (eBDq1BDgq, eDq1Dgz). Concatenating
these with the homotopy p(2) gives a homotopy (pf3))56[071] between

POND@ee@n®q) and (@D, e®q @ q).
e Setting 7 = q; @ ¢2 and replacing p3) with

Plyy == D) D (1=r),(1=7))
gives a homotopy between (p@r@® (1 —r),e@®@r®1 —r @ 0y,) and
(e@dr®(l—r),e®drd(l—r)).
r 1—r L . .
e Set u = . , which is a unitary in My, (M). Moreover, u
-r r
is self-adjoint, so connected to the identity via some path (u®)sejoq] of
unitaries. Then

(1(—Du5,1@u8)(p(—9r@(1—T),@@T(—D(l—r))(l@us,l@us)*

defines a homotopy between (p @reo(l-r,edre (1 - r)) and
(p @ 1oy, ® 02y, € @ 1o, @ 02,,). Similarly, we get a homotopy between
(e@r@ 1-—r)edre(l-— r)) and (e @ la, @ 02y, € @ 1o, @ 0gy,).
Concatenating these with p(4) gives a homotopy p(5) between (p@® 12, ®
O2p, € D 1o, @ 02,) and (e @ 1, @ 02y, € D 1o, D 0y,).
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o Write pf5) = (pg,pi) for paths of projections (pf)sefo] and (pf)sefo]
in My,1(M). Then Lemma 4.8 gives a continuous path of unitaries
(V%) sefo,1] 0 M1 (M) with 0° = 1, and p§ = v,(e @ 1o, ® 09y,) ¥ for all
s € [0, 1]. Note in particular that vi(e @ 1a, @ 09, )0 = (e ® 12, D 02,),
even though we may not have that v! = 1. Define then

Pley = (US,US)*p‘(%) (vs, Vs),

which gives a new homotopy between (p @ 1o, @ 0y, € @D 1o, @ 0y,)
and (e @ lg, @ 09y, € D 1o, @ 0g,,) with the additional property of being
constant in the second variable.

o Let Myy4,(M) be the 1 x 4n row matrices, and choose an isometry
w € My, (B(£?)) € M be such that w(ly, @ 0s,)w* = ssess. Define

t = <51 w) € Miwans1(B(£?) S Miyansi(M)),

which is an isometry, and define Piny = tpr)t*. Then this is a homo-
topy in Dy (Qr (7)) between (s1ps} + saesy, siest + sqesh) and (syes} +
Soesh, s1es7 + sqesy) that is constant in the second variable.

Now, restricting the homotopy p(7) to the first variable gives a homotopy of
projections in M, say (p®)sejo1] in M between sypsf + sas3e and e, and such
that p* — e is in Qp(m) for all s. The function

[0,1] = Da(Qr(m)), s — (p° )

defines an idempotent, say ¢, in C[0,1] ® Dy(Qr(m)). As the natural *-
homomorphism

C[0,1] ® Dus(cy, o(miic)) (Cre(m; K)) — C0,1] @ D (Qr())

is surjective, ¢ lifts to a self-adjoint contraction of the form

(a,e) € C[0,1] x Doy o(mkc)) (CLe(m; K))
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analogously to the argument at the end of the surjectivity half. The element
a defines a homotopy in P™(A, B) between s1pst + sqess and e. On the other
hand, s;ps} + sqess ~ p by Corollary 4.10, whence we have

P~ $1ps] + sasse ~ e,

completing the proof that [p] = 0, and so we have injectivity.

To complete the proof, note that the existence of a canonical isomor-
phism KKJ(A,B) =~ KK(A, B) follows by combining: the isomorphism
KK%(A, B) = Ko(Du(Qr(m))) proved above; the isomorphism K, (Dy(Qr(m))) =
K.(Qr(m)) of Lemma 4.13; the isomorphism K,(Qp (7)) =~ K.(Cp.(m)) of
Corollary 3.11; and the isomorphism Ky(Cp (7)) = KK(A, B) of Theorem
3.2. O

Finally in this section we prove a technical lemma about functoriality
that we will need later.

Lemma 4.15. Let m: A — L(FE) be a substantially absorbing representation
on a Hilbert B-module, and let C' = Cy(Y') be a separable and commutative
C*-algebra. Forye Y, let e¥ : Co(Y) — C be the =-homomorphism defined
by evaluation at y. Let ¢pp : KK(A,B) — KK} (A, B) be the isomorphism
of Proposition J.1/. Then if p is an element of P*®™(A,C ® B) with corre-
sponding family (p})iep1,o0)yey @S in Lemma 4.4, we have that

et (dcgslp]) = ¢5'[p"]
Proof. The map
P'®(A,CQB) - P"(A,B), p—p’
induces a homomorphism
el : KK (A,C® B) —» KK} (A, B).

Moreover, with notation as in the first paragraph of the proof of Theorem

4.14, ¥ induces =-homomorphisms

e Qr1®n) - Qr(r) and €¥: Dy, (QL(1®m)) — Dy (Qr(m))
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in the natural ways. Consider the diagram

KK(A,C®B) — Ko(CL,.(1®@ 7)) —> Ko(Qr(1Q@ 7)) —> Ko(Dn (QL(1®m))) ——> Kqu;@"(Aﬂ C®B)

jei Le’i jegk Lﬁi lei

KK(A, B) —————> Ko(CL (7)) ——— Ko(QL (7)) ————— Ko(Dm(Qr(m))) KK% (A, B)

where: the first pairs of horizontal arrows are the isomorphisms of Theorem
3.2; the second pair of horizontal arrows are induced by the canonical quotient
map; the third pair of horizontal arrows are induced by the inclusion a —
(a,0); and the last pair of horizontal arrows are the isomorphisms of Theorem
4.14. The first square commutes by Lemma 3.17 (using also Proposition 2.9 to
see that the representation 1®7 is strongly absorbing). It is straightforward
to see that the remaining squares commute: we leave this to the reader. As
the isomorphisms ¢cgp and ¢p are by definition the compositions of the

arrows on the top and bottom rows respectively, the result follows. O

5 The topology on KK

Throughout this section, A and B are separable C*-algebras.

Our goal in this section is to recall the canonical topology on K K (A, B),
and describe it in terms of the isomorphism KK (A, B) =~ KK%(A, B) of
Theorem 4.14.

We need a quantitative version of Definition 4.3; this will also be im-
portant to us later when we define our controlled K K-theory groups. See
Definition 4.1 for graded representations and the neutral projection e used
in the next definitions.

Definition 5.1. Let A and B be separable C*-algebras, and let 7 : A —
L(FE) be a graded representation on a Hilbert B-module. Let X be a finite
subset of the unit ball A; of A, and let € > 0. Define PT(X, B) to be the set
of self-adjoint contractions in £(FE) satisfying the following conditions:

(i) p—eisin K(E);
(i) ||[p,a]|l < € for all a € X
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(iii) |a(p* —p)| < e for all a € X.
For the next definition, see Definition 4.3 for the notation P™(A, B).

Definition 5.2. Let A and B be separable C*-algebras, and let 7 : A —
L(E) be a graded representation on a Hilbert B-module. For a finite subset
X of Ay and € > 0, define a function 7x . : P"(A, B) — [1,0) by

Tx(p) := inf{tg € [1,0) | pr € PI(X, B) for all t > to}.

For each p € P™(A, B), define U(p; X, €) to be the subset of P™(A, B) con-
sisting of all ¢ such that there exists ¢ > max{7x(p), 7x.(¢)} and a norm
continuous path (p*)sefo,1] in £(£) such that each p*® is in P (X, B), and with
endpoints p° = p; and p' = ¢.

For the next definition, recall the homotopy equivalence relation ~ on
P™(A, B) from Definition 4.5.

Lemma 5.3. Let 7 : A — L(E) be a graded representation of A on a graded
Hilbert B-module. Let p € P™(A, B), X be a finite subset of Ay, and € > 0.
Then:

(i) if p' ~p, then U(p; X, €) = U(p'; X, €);
(i1) if ge U(p; X,€) and ¢ ~ ¢, then ¢’ € U(p; X, €).

Proof. Part (ii) follows from part (i) on noting that ¢ is in U(p; X, €) if and
only if p is in U(q; X, €). It thus suffices to prove (i).
Assume then that p ~ p/, so there is a homotopy (p*)sefo,1) in P*®™ (A, C[0,1]®

B) be a homotopy between p and p’. The definition of a homotopy gives

tp = max{7. x(p), T, x(p')} such that p; is in P7(X, B) for all s € [0,1]. Let

q be an element of U(p; X,€), and let t;, = {7x.(q), Tx(p)} be such that
there is a homotopy (¢°)se[0,1] connecting p;, and q;,. Write I for whichever

of the intervals [t,, ¢,

]
topies (p7,)sefo,11, (Pt)
U(p; X,e) < U(p'; X, €). The opposite inclusion follows by symmetry. O

or [t,,t,] makes sense. Then concatenating the homo-
ter and (q°)sefo,1] shows that ¢ is in U(p’; X, €). Hence
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Definition 5.4. Let 7 : A — L(E) be a graded representation on a Hilbert
B-module. For a finite subset X of A, e > 0, and [p] € KK} (A, B), define
the X -e neighbourhood of p to be

V(lpl; X,€) :={[q] € KK»(A,B) | g€ U(p; X, €)}.

(note that V([p]; X, €) does not depend on the particular representative of
the class [p] by Lemma 5.3). The asymptotic topology on K K7 (A, B) is the
topology generated by the sets V([p]; X, €) as X ranges over finite subsets of
Ay, € over (0,00), and p over P™(A, B).

Lemma 5.5. Let m : A — L(FE) be a graded representation on a Hilbert
B-module. For any [p] € KK%(A, B), the collection of sets V(|p]; X, €) as X
ranges over finite subsets of Ay and € over (0,00) form a neighbourhood base

of [p]. Moreover, the asymptotic topology is first countable.

Proof. Using Lemma 5.3, it suffices to prove the corresponding statements
for the topology on P™(A, B) generated by the sets U(p; X, €), so we do this
instead.

For the neighbourhood base claim, we must show that whenever ¢, ..., ¢,,
Xi,..., X, and €1, ..., €, are such that p € [, U(g; X;, €;), then there exist
X, € with

U(p; X, e€) gﬁ Ul(qi; Xy, €).

As whenever Y 2 X and § < ¢, we have that U(p;Y,0) < U(p; X, €), it
suffices to prove this for n = 1. Assume then we are given ¢ € P™(A, B),
a finite subset X < A;, and € > 0 such that p € U(q; X,¢€). We claim that
U(p; X,€e) < Ul(gq; X,€), which will suffice to complete the neighbourhood
base part of the proof. Indeed, say r is in U(p; X, €). Then there exists ¢, =
max{7x,(p), 7x.(r)} and a homotopy (7°)s[o1] passing through PT(X, B)
connecting p;, and 7, . Similarly, there exists ¢, > max{7x (p), 7x.(¢)} and
a homotopy (¢°)sefo,1] passing through P7 (X, B) connecting ¢, and p;, . Let
I be the closed interval bounded by ¢, and ¢,. Then concatenating the three
paths (¢°)sefo1]: (Pt)ter, and (7%)sep0,1] shows that r is in U(q; X, €), so we are
done.
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Assume now that A is separable, so in particular, there exists a nested
sequence X; € X5 < of finite subsets of the unit ball A; with dense union.
Fix a point p € P™(A, B). We claim that the sets U(p; X,,,1/n) form a
neighbourhood basis at p. Indeed, given what we have already proved, it
suffices to show that for any finite X < A; and any € > 0 there exists n
with U(p; X,,,1/n) € U(p; X,€). Let n be so large so that for all a € X
there is o’ € X, with |a — d’| < €/2, and also so that 1/n < €/2. From the
choice of n, it follows that Py, (X,, B) < P7(X, B), from which the inclusion
U(p; X, 1/n) < U(p; X, €) follows. ]

We now recall the canonical topology on K K (A, B), which has been in-
troduced and studied in different pictures by several authors: see for example

t'% showed

the discussion in [5] for some background and references. Dadarla
in [5, Lemma 3.1] that this topology is characterized by the following prop-
erty (and used this to show that the various different descriptions that had

previously appeared in the literature agree).

Lemma 5.6. Let A and B be separable C*-algebras. Let N = N U {o0} be
the one point compactification of the natural numbers, and for each n € N,
let e" : C(N,B) — B be the *-homomorphism defined by evaluation at n.
Then the canonical topology on KK (A, B) is characterized by the following
conditions.

(1) It is first countable.

(11)) A sequence (x,) in KK(A, B) converges to xo, in KK(A,B) if and
only if there is an element v € KK (A, C(N, B)) such that e?(z) = x,
for all n e N. O

Theorem 5.7. Letw: A — L(E) be a substantially absorbing representation.
Then the isomorphism of Theorem /.14 is a homeomorphism between the

asymptotic topology on K K% (A, B) and the canonical topology on KK (A, B).

We need an ancillary lemma.

BDadarlat attributes some of the idea here to unpublished work of Pimsner.
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Lemma 5.8. Let m : A — L(FE) be a graded representation on a Hilbert
B-module. For any € > 0 and any finite X < Ay, if p,q € E/2(X B) satisfy
lp—q| < €/6, then there exists a homotopy (p°)se[o,1] connecting p and q and
passing through P (X, B).

Proof. A straight line homotopy between p and ¢ works. We leave the details
to the reader. O]

Proof of Theorem 5.7. We have already see that the asymptotic topology
is first countable in Lemma 5.5. Hence by Lemma 5.6, it suffices to show
that sequential convergence in the asymptotic topology is characterized by
condition (ii) from Lemma 5.6.

Say first that ([p"]),.ox Is a collection of elements of K K} (A, B). Let 1®n
be the amplification of 7 to the Hilbert C'(N)® B module C(N)® E, and let
q € P*®(A,C(N, B)) be such that for all n € N we have e”[¢q] = [p"]. We
want to show that the sequence ([p"])nen converges to [p™] in the asymptotic
topology. For this, it follows from Lemmas 5.3 and 5.5 that it suffices to fix
a finite subset X of A; and € > 0, and show that p” is in U(p™; X, ¢) for all
suitably large n.

Recall the function 7y . of Definition 5.2. As ¢ is an element of P'®(A, C(N, B)),
the number 7 := sup, 5 Tx,2(¢") is finite. As ¢ is in P'®"(A, C(N, B)) we
also see from Lemma 4.4 that there exists N such that |¢? —¢*| < €/6 for all
n = N. We claim that p™ is in U(p*; X, €) for all n = N, which will complete
the first half of the proof.

Using Lemma 4.4, we may identify ¢ with a collection (¢"), o5 of elements
of P(A, B) (satisfying certain conditions). Now let n > N and consider the
following homotopies.

(i) As eP[q] = [p™], Theorem 4.14 implies that ¢* ~ p*, and thus there is
to = max{7, 7x (p™)} and a homotopy passing through P7(X, B) and
connecting p° and g7 .

(ii) Similarly to (i), there is ¢,, > max{r, 7x (p")} and a homotopy passing
through P7 (X, B) and connecting p} and ¢} .
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(iii) As [¢? —q|| < ¢€/6 for all n > N and as 7 = sup,,.5 Tx,/2(¢"), Lemma
5.8 gives a homotopy passing through P7(X, B) and connecting ¢* and

qr-
(iv) The path (¢}')ie[r,] is @ homotopy passing through P (X, B) that con-
nects ¢! and ¢’ .

(v) The path (¢/°)i[rt,] is @ homotopy passing through P7(X, B) that
connects ¢ and ¢;” .

Now let tpnax = max{t,,t,}. Concatenating the five homotopies above
with the homotopies (P')ieft, tmax] A (D7) tefton tmax] (Which pass through
P7(X, B)) shows that p" is in U(p™; X, ¢) as claimed.

For the converse, fix a sequence X; € Xy < --- of nested finite sub-
sets of A; with dense union. Let us assume that ([p"])nen 1S a sequence in
KKZ(A, B) that converges to [p®] in the asymptotic topology. We want to
construct an element g € P'®" (A, C(N, B)) such that e”[¢q] = [p"] for each
n in N. We will define new representatives of the classes [p"] as follows.
For each m, let N,, € N be the smallest natural number such that p" is in
U(p®; Xm, 1/m) for all n = N,,; as [p"] converges to [p*] in the asymptotic
topology, such an N,, exists, and the sequence Ny, Ny, ... is non-decreasing.

Choose a sequence t; < ty < --- in [1,0) that tends to infinity in the
following way. For n < Ny, let ¢,, = 1. Otherwise, let m be as large as possi-
ble so that n > Np,. Let t, = max{7x,, 1/m ("), Tx,n,1/m () t1, ..s tn1} + 1,
and note the choice of N,, implies that p" € U(p™; X,,, 1/m), so there exists
a homotopy between p;' and py° parametrized as usual by [0, 1] that passes
through Pf/m(Xm, B). Approximating this homotopy by a piecewise-linear

homotopy, we may assume that it is Lipschitz, and still passing through

s
1/m

topy, we may assume that it is 1-Lipshcitz. In conclusion, for some suitably

(Xm, B). Moreover lengthening the interval parametrizing the homo-

large r, € [1,00), we may assume that we have a 1-Lipschitz homotopy
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(P™")te[tn,tn+rn] Detween pi' and pi°. Define for each n € N

pP te [l t,]
" =3 pt otetn,tat 1]
py t=t,+r,

0

and note that [¢"] = [p"] for all n € N using Lemma 4.6. Define ¢* = p®.
Using the characterization of Lemma 4.4, one checks directly that ¢ = (¢"),,cx

defines an element of P'®" (A, C(N, B)). This element satisfies e?[q] = [p"]
by construction, so we are done. O]

6 Controlled K K-theory and K L-theory

As usual, A and B always denote separable C*-algebras.

Our goal in this section is to (finally!) introduce our controlled K K-
theory groups, and describe KL(A, B) in terms of an their inverse limit.
For the next definition, recall the notion of a graded representation from
Definition 4.1, and the set P7(X, B) from Definition 5.1.

Definition 6.1. Let 7 : A — L(F) be a graded representation. Let X < A;
be finite and let ¢ > 0. Equip P.(X, B) with the norm topology it inherits
from L(F), and define KK7(X, B) := m(P7(X, B)) to be the associated set
of path components.

In the special case that 7 is substantial we show below that the set
KKT(X,B) has a natural abelian group structure. In this case, we call
the groups K K™ (X, B) controlled KK -theory groups.

Our first goal is to define a group structure on K K7 (X, B). For this, let us
assume that (7, F') is substantial (see Definition 4.1), and fix two isometries
s1,89 € B((?) satisfying the Cuntz relation s;si + sps5 = 1. Using the
inclusion B(¢?) € L(E) from Lemma 4.2, we think of s; and s, as isometries
in L(F) that commute with the subalgebra A and the neutral projection e.
We define an operation on K K (X, B) by

[p] + [q] := [s1ps] + 52¢53].
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The following lemma is proved in exactly the same way as Lemma 4.7.

Lemma 6.2. With notation as above, the set K KT (X, B) is a commutative

semigroup. The group operation does not depend on the choice of sy and
S9. O

In order to prove that K K7(X, B) is a monoid, we need an analogue of

Lemma 4.9.

Lemma 6.3. Let m: A — L(F) be a substantial representation on a Hilbert
B-module. Let X be a finite subset of Ay, let € > 0, let p be an element of
PT(X,B), and let v be an isometry in the canonical copy of B({*) < L(E)
from Lemma 4.2. Then the formula

vpv* + (1 —wvv)e
defines an element of PT(X, B) in the same path component as p.

Proof. The fact that vpv* + (1 — vv*)e is an element of PT(X, B) follows
from the fact that v commutes with A. We fix 6 € (0,1), to be determined
in the course of the proof by X, p, and e. As p — e is in I(F), there exists
an infinite rank projection r € B(¢?) such that 1 — r also has infinite rank,
and such that

[(T=r)(p—e)| <. (13)

Note that as r commutes with e, line (13) implies that
|7, ]| < 26. (14)

As r is a projection and commutes with elements of A, and as p is a contrac-

tion, this implies that for any a € X,
la((rpr)* = rpr)| < [rlp, rlpr| + [ra(p® — p)r| < 26 +max a(p” — p)|. (15)

Define now ¢ := rpr + (1 — r)e, which is a self-adjoint contraction. Note
that ¢ —e = rpr —re = r(p —e)r, so ¢ — e is in K(E). We have ¢* — q =
(rpr)? — rpr, and so line (15) implies that for all a € X,

lalg® = @) < 20 + max |a(p” — p)].
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Moreover,

lg—pl = |rpr —rp+ (1 —r)e—(1—7)p| < |[r,p]| + (1 =7)(p—e)| <36

by lines (10) and (14). Hence as long as § is so suitably small (depending
on € and € — max la(p® — p)||), we see that ¢ is in P7(X, B). Moreover, for
ae

suitably small §, we have that the path
[0,1] = L(E), s—sp—(1—s)q

is norm continuous and passes through P7(X, B), and so shows that p ~ g¢.
Hence it suffices to prove the result with p replaced by g¢.

Now, let v € B((*) < L(F) be an isometry as in the original statement.
Choose a partial isometry w € B(£?) such that ww* = 1 —r and w*w =
1 —vv* 4+ wv(1 —7r)v*; such exists as the operators appearing on the right hand
sides of these equations are infinite rank projections. Define

u:=vr +w* e B({*) < L(E).

Then one checks that u is unitary, and moreover that ugu* = vqv*+ (1—vv*).
Let (us)sefo,1] be any norm continuous path of unitaries in B(¢?) connecting
u to the identity. Then if we write “r ~ s” to mean that r,s € P"(X, B)
are in the same path component, the homotopy (usqu})sco1) shows that
q ~ vqu* + (1 —vv*). In conclusion, we have that

p~q~uvqt+(1—ovv*)e~vpv* + (1 —ovv¥)e,

where the last ‘~’ follows from the homotopy (v(sp + (1 — s)g)v* + (1 —
Uv*>e)se[o,1]' O
Corollary 6.4. Let m : A — L(FE) be a substantial representation on a
Hilbert B-module. Let X be a finite subset of Ay, let € > 0. Then the
commutative semigroup K KT (X, B) is a commutative monoid with identity

element [e].

Proof. This follows from Lemma 6.2, and Lemma 6.3 with v = s; (whence

1 —vv* = s98%). O
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Proposition 6.5. Let 7 : A — L(E) be a substantial representation on a
Hilbert B-module. Let X be a finite subset of Ay, let € > 0. Then the monoid
KK.(X,B) is a group.

Proof. We must show that inverses exist. Let then p be an element of

Pr(X, B). Let My(C) be unitally included in £ as in Lemma 4.2, and let u
01

be the element 10 € M5(C), so ueu = 1—e. The self-adjoint contraction

s1est + sou(l — p)uss then defines an element of PT (X, B), which we claim

represents the inverse of [p| in KK (X, B). To establish the claim, we must

show that

si(s1es] + squ(l — p)usy)sy + sapss

is homotopic to e through elements of PT(X, B).
We first define

V1= $987ST + 515185 + S1525557,
which is unitary in B(¢?) < L. Note that
v(s1(s1pst +sau(l—p)ussy)sy +sapsy)v™ = s1(s1ps] +sau(l—p)uss)si + sqess.

Moreover, v is connected to the identity in the unitary group of B(¢?); as
B((?) commutes with A and e, this shows that

s1(s1es] + sau(1—p)uss)st +sopsy and  s1(s1ps] + sau(l—p)usy)sy + sqess

are homotopic through elements of P7(X, B). Lemma 6.3 (with v = s;)
implies that the second element s (s1psy + sou(l — p)uss)si + saesy above is
homotopic in P (X, B) to s;psi + sau(1l — p)uss, so it suffices to show that
s1pst + sau(l — p)uss is homotopic to e through elements of PT (X, B).
Now, connect u to the identity through unitary elements of M5(C). This
gives a path, say (pﬁo))te[o,l] connecting s1ps} + sou(1—p)usi to s1ps} +sa(1—
p)ss. We have H[pgo), al|| < € and Ha((pgo))2 —pgo))H < eforalltand all a € X.
At this point, to simplify notation, let us write elements of L(E) as 2 x 2
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matrices with respect to the matrix units e;; := 8iS} - With this notation'?,

consider the path (pgl))te[o,,r/g] defined by

w. [(p O cos(t) sin(t)) (0 O cos(t) —sin(t)
b= (0 0) " (— sin(t) cos(t)) <0 1—p> (sin(t) cos(t) )

One computes that

2
(D2 _ (1) _ [P"—P 0
(pi ') —p: ( 0 cos®(t)(p? —p)) 7

whence [a((pi"™)? = p")| < € for all t € [0,7/2] and all a € X. Another
computation gives that for any a € A and t € [0, 7/2],

[a,pgl)] ~[a,p] ( cos®(t) — cos(t) sin(t)) ‘

—cos(t)sin(t)  — cos?(t)

The norm of the matrix appearing on the right hand side is | cos(t)| (or just
cos(t) for t € [0,7/2]), and therefore we see that |[a,p!”|| < € for all a € X
and all ¢t € [0, 7/2].

Concatenating the paths (p,EO) )iefo,1] and (p,gl) )te[o,7/2], and reparametriz-
ing, we get a new path (p;)w[o,1] connecting sips} + sou(l — p)usy and s;s7.
This path does not define an element of P7(X, B): it satisfies all the condi-
tions to be in this set except that p; — e need not be in K(E). It remains to
adjust the path (p;)iwe[o,1] to get a path connecting sips} + sou(1 — p)uss and
e in PT(X, B).

Let w : L(E) — L(E)/K(E) be the quotient map. With respect to
the decomposition in Lemma 4.2, w is injective on the canonical copy of
B(C*?®¢*) < L(E). As p—e e K(F) and ¢ is a projection, we see that the
path (ww(pt))eepo,1] passes through projections in B(C*®¢?), and it connects e
and s;s7. Hence using Lemma 4.8, there exists a continuous path of unitaries
(wt)tepo1] in B(C* @ £%) with wy = 1 and such that w(p;) = wyw(po)w; for
all t. The path (w;psw¢)sejo) then lies in P7(X, B), and connects sips} +
sou(1 — p)uss and e as required. O

9Tn more formal notation, pgl) = s1(p + sin?(£)(1 — p))s¥ + sy cos(t) sin(t)(1 — p)s¥ +
s cos(t) sin(t)(1 — p)s¥ + sa cos?(t)(1 — p)si.
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Having established that each KK7T(X, B) is a group, we now arrange

these groups into an inverse system, and show that the resulting inverse
limit agrees with K L(A, B).

Definition 6.6. Let X' be the set of all pairs (X, e) where X is a finite
subset of Ay, and € € (0,00). We equip X with the partial order defined by
(X,€) < (Y,9) if for any graded representation 7 : A — L(FE) we have that
Pr(Y, B) € P<(X, B).

Remark 6.7. We record some basic properties of the partially ordered set X.

(i)
(i)

(i)

Note that (X,e) < (Y,9)if X €Y and § <e.

It follows from this that X is directed: an upper bound for (X7, ¢;) and
(X2, €2) is given by (X7 U X, min{ey, €2}).

The partial order in Definition 6.6 contains a lot more comparable pairs
that those arising from the “naive ordering” on the set X defined by
“X €Y and 0 < € as in (i) above. For example, the naive order-
ing never contains cofinal sequences (even for A = C), while the or-
dering from Definition 6.6 always does. To see this, let (a,)r_, be a
dense sequence in Aj, and define X,, := {ay, ..., a,}. Then the sequence
(Xn, 1/n)%_; is cofinal in X for the ordering from Definition 6.6.

If A is generated by some finite set X < A;, then the sequence (X, 1/n)>_;
is also cofinal in X.

If (X,¢e) < (Y,0) for the ordering from Definition 6.6, then there is a

canonical “forget control” map
o) KK}(Y,B) - KKT(X, B). (16)

In this way, the collection (K KT (X, B))(x,ex becomes an inverse sys-
tem, with well-defined inverse limit lim K K7 (X, B). Recall that the

inverse limit can be concretely realized as the abelian group

{(ﬂix,e) e [[ KKIX.B)|exi(eys) = ﬂfx} (17)

(X,e)eX
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(vii)

It is equipped with a natural family of homomorphisms
wx,.:lim KK (X,B) - KKT (X, B)
defined by restricting to each coordinate.

Recall that the inverse limit has the following universal property. For
any abelian group A equipped with a family of homomorphisms 9 x :
A - KKT (X, B) such that the diagrams
A
Dy,s Vx,e

Y,8
goX,e

KKZI(Y,B) KK™(X,B)

commute, there is a unique homomorphism w : A — lim KK (X, B)

making the following diagrams

A
Yy,s VX,
hnh,f(ﬁ@%)(rB)
@Y, WX e
R
KK (Y, ) KK (X, B)

all commute.

Recall (this is straightforward to check from either the concrete def-
inition above, or the universal property) that any cofinal subset of a
directed subset of a directed set defines the same inverse limit. Hence
we may compute liin KK (X, B) using the cofinal sequences from parts

(iii) or (iv).

Our goal in the remainder of this section is to show that

lim KK.(X, B) ~ KL(A, B)

whenever 7 is substantially absorbing as in Definition 4.1.

For the next lemma, recall the notation 7x (p) from Definition 5.2 above
and the notation K K} (A, B) from Definition 4.5.
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Lemma 6.8. Let m: A — L(F) be a substantial representation on a Hilbert
B-module. For each (X, €) € X there is a group homomorphism

mx.e: KK5(A, B) > KK*(X, B)

defined by sending [p] to the class of [p:], where t = Tx(p) + 1. Moreover,
the family of homomorphisms (Tx ) (x,ex are compatible with the forgetful

maps in line (16) above in the sense that the diagrams

KK3(A, B)—— KK3(A, B)

TY,§ TX,e
Y,§

‘pX,c

KKZ(Y. B) X% KK7 (X, B)
commute, and thus determine a group homomorphism
w: KK;(A,B) - lim KK (X, B).

Proof. To see that the map 7mx  is well-defined, let (p®)se[0,1] be a homotopy
between pY, pt € P™(A,B). Let ty = 7x.(p°) + 1, t1 = 7x.(p') + 1, and
choose ¢5 such that ¢, > max{to, ¢}, and such that p; is in P7(X, B) for all
s. Then concatenating the homotopies (pf)ue(io,ta], (P5,)sef0,1]> and (07 )eeft to]
shows that p) ~ p;, in P7(X, B) and we get well-definedness.

To see that 7y is a group homomorphism, let s1, so € B(¢?) < L(E) be a
pair of isometries satisfying the Cuntz relation, and used to define the group
operations on both KK7%(A, B) and KKT(X, B), and let [p], [¢] € P"(A, B).
Then [p] + [¢] is the class of [s1ps} + s2¢si], and we have that

. % * % *
TXe o [81P8] + 82G53] = [81D1,.,57 + $144,,,51]

where t,., := Tx.(s1psi + s2¢s3) + 1. On the other hand, if we define
ty:=Tx(p) + 1 and ¢, := 7x (¢), then

Tx.e[p] + Tx.[q] = [SlptpST + 52th5;]-

Define t,4, := max{t,,t,}, and say without loss of generality that t, > t,.
Then the path (sipy, 5] + 52¢55 )te[t, t,] Shows that 7x ([p] + [q]) = 7x.[p] +
Tx.e[q] as required.
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Compatibility of the maps 7y, with the forgetful maps in line (16) is
proved via similar arguments; we leave the details to the reader. The exis-
tence of w follows from this and the universal property of the inverse limit
as in Remark 6.7, part (vi). O

Using the ideas in the previous section, we now get the promised rela-
tionship to K'L. To state it, let m be the closure of zero in the asymptotic
topology on KK7%(A, B) from Definition 5.4. Following Dadarlat® [5, Sec-
tion 5|, define K'L(A, B) to be the quotient of K K (A, B) by the closure of
the singleton {0} in the canonical topology.

Theorem 6.9. Let m: A — L(E) be a substantial representation on a Hilbert
B-module. The homomorphism w in Lemma 6.8 is surjective and descends

to a well-defined isomorphism
KKZ%(A, B
w —i’ )
{0}

In particular, if © is substantially absorbing, there is a canonical isomorphism

lim KK™(X, B) =~ KL(A, B).

~ lim KK (X, B).

Proof. It follows directly from the definitions that an element of K K% (A, B)
is in the closure of {0} if and only if it maps to zero under w, so it remains
to show that w is surjective. For this, let us choose a cofinal sequence
(X, 1/n)*_, of X as in Remark 6.7 part (iii), whence there is a canonical
isomorphism

liinKK:(X, B) = liinKK{r/n(Xn,B)

as in Remark 6.7 part (vii). Hence it suffices to prove surjectivity of the

induced map
KKJ (A, B) — limKK{r/n(Xn,B).

Using the concrete definition of the inverse limit from line (17) above, let
([p"]);=1 be a sequence defining an element of lim K K7, (X,, B) with p" €

20The original definition of KL is due to Rgrdam [18, page 434]: Rgrdam’s definition
applies when A satisfies the UCT, and the two definitions agree in that case.
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f/n(Xn, B) for each n. As this sequence defines an element of the inverse
limit we must have that for each n, the forgetful map

K K41y (Xnt1, B) = KK, (Xn, B)

sends [p"*'] to [p"]. This implies that there is a homotopy (p?)sefo,1] of
elements in P{), (X,, B) with py = p" and p} = p"t1. Define p : [1,00) — L
by setting p; := p}_,, whenever t is in [n,n + 1], and note that p is then an
element of P™(A, B).

We claim that 7[p] = ([p"]);"_;, which will complete the proof. Indeed, it
suffices to fix n and show that mx, 1/,[p] = [p"]. We have mx, 1/n[p] = [pt,],
where t, := 7x, 1/»(p). By definition of p and of 7x, 1/», the interval I with
endpoints n and ¢, is such that the path (p;)s lies entirely in Pf/n(Xn, B).

Hence
Tx,1/mlp] = [pt,] = [pn] = [p"]
and we are done with the first isomorphism in the statement.
The isomorphism lim K K7 (X, B) ~ KL(A, B) is a direct consequence of
this, Theorem 4.14, an((_i Theorem 5.7. O

7 Identifying the closure of zero

As usual, A and B are separable C*-algebras throughout this section.

Our goal in this section is to concretely identify the closure of zero in
the asymptotic topology on K KZ%(A, B). This will complete the proof of
Theorem 1.1 from the introduction.

We will need an analogue of Lemma 4.4 in the controlled setting.

Lemma 7.1. Let 7 : A — L(E) be a graded representation on a Hilbert B-
module. Let C' = Cy(Y') be a separable commutative C*-algebra, and let CQE
be equipped with the amplified representation 1 @ m of A as in the discussion
just above Lemma 4.4. Let € > 0, and let X of the unit ball A; of A.
Then there is a natural identification between elements p of PX®™(X,C ® B)
and parametrized families of self-adjoint contractions (p¥)yey such that the

corresponding function p : Y — L(FE) has the following properties:
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(i) the function p — e is in Co(Y,KC(E));
(ii) |[[p,allc,v.ce) <€ forallae X;
(iii) a(p® = p)lcyv.emy) < € for allae X.

Proof. Analogously to Lemma 4.4, the proof rests on the identification K(C'®
E) = Cy(Y,K(F)); we leave the details to the reader. O

Let now SB = (Cy(0,1) ® B denote the suspension of B. The following

lemma is immediate from Lemma 7.1.

Corollary 7.2. Let m: A — L(FE) be a graded representation of A. For any
finite subset X of Ay and € > 0, elements of P'®"(X,SB) can be identified
with norm continuous functions

p:[0,1] = L(E), t—p
such that:
(i) po=p1 = ¢;
(i) py —e € K(E) for all t € [0,1];
(iii) |a(p? — po)|| < € and ||[ps,al| < € for all a € X and all t € [0,1]. N

Definition 7.3. Let 7 : A — L(E) be a graded representation of A, and let
X < A; be finite and € > 0. Let p,q € PT(X, SB) be represented by paths
as in Corollary 7.2, and define their concatenation p - g to be the path that
follows p then ¢: precisely

b g1 12<t<1’

The following lemma says that the group operation on K K (X, SB) can
equivalently be defined by concatenation; it will be useful later in the section.
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Lemma 7.4. Let m: A — L(E) be a substantial representation of A, let X
be a finite subset of A1, € > 0, and let SB be the suspension of B. Then for
any [p], [q] € KKT(X,SB) we have that [p] + [¢] = [p - ¢]. Moreover, —[p]
15 represented by the path p that traverses p in the opposite direction.

Proof. Up to homotopy, we may assume that p, = e for all ¢ € [1/3,1], and
that ¢ = e for all ¢t € [0,2/3]. The sum [p]| + [¢] is then represented by a
function of the form

sipesT + sqesy  te€(0,1/3]
(s1psy + s2qs3) = % € te[1/3,2/3]
siest + soqiss  te[2/3,1]

Let v = 5185 + sysF, which is a unitary in B(£?). As the unitary group of
B((?) is connected, there is a path u = (u;)efo,1] of unitaries in B(¢?) such
that u; = 1 for t < 1/3 and u; = v for t > 2/3. We may consider u as an
element of the unitary group of £(Cy(0,1) ® ¢?) < L(Cy(0,1) ® E); using
that u commutes with e, we have then that

s1peS; + sqesy  te[0,1/3]
(u(sips] + s2qss)u™)y =< e te[1/3,2/3] . (18)
S1q1ST + sqesy  te[2/3,1]

On the other hand, the unitary group of £(Cy(0,1) ® ¢?) is connected (even
contractible) by [4, Theorem on page 433|, and commutes with both e and A,
so we may connect u to the identity via some norm continuous path in this
unitary group. This gives a homotopy showing that u(s;ps}+s2qss)u* defines
the same element of K K™ (X, SB) as s;ps} + saqss. From the description in
line (18), we have also that u(sips} + seqss)u* and si(p - q)s} + sqesh define
the same element of KK7(X,SB). This element is homotopic to p - ¢ by
Lemma 6.3, so we are done with the proof that [p] + [¢] = [p - ¢]

The fact that —[p] = [p] is a consequence of the first part: indeed, [p] +
[P] = [p- P, and p - P is easily seen to be homotopic to the constant path e,
which represents the identity in K KT (X, SB) by Corollary 6.4. [
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We now recall the definition of the lim._ ' group of the inverse system
of Remark 6.7, part (v). For simplicity?’, we choose a cofinal sequence
(X, €n), of the directed set X' of Definition 6.6: for example, the cofi-
nal sequences of Remark ??, parts (iii) or (iv) will work. Note that for any

such sequence, we must have that ¢, — 0 as n — 0.

Remark 7.5. It will turn out (as a consequence of Theorem 7.7 below) that the
lim' group does not depend on the choice of cofinal system. As a result, we
will sometimes be a little sloppy and write something like “lim' K K.(X, B)”

without specifying a choice of cofinal sequence.

Let then 7w : A — L(F) be a substantial representation, and consider the
inverse system associated to our cofinal sequence

"BV KKT (X, B) 5 KKT (X, B) ™5t B KK (X4, B)

where the maps ¢, are the forget control maps of Remark 6.7 part (v).
Consider the homomorphism

0 o0
a: [ [KK] (X0, B) = [ [ KK (X0, B),  (2n) = (#a(@n)).
n=1 n=1
As in Remark 6.7 part (v), the inverse limit is concretely realized as the kernel
of the homomorphism id—a. On the other hand, the group lileK; (X,, B)

is by definition the cokernel of id — a.

Lemma 7.6. Let m: A — L(F) be a substantial representation. Consider an
element ([p"])y_, of the product | [, KKT (X,,SB). Use the identification
in Lemma 7.1 to consider each p™ as a function p" : [0,1] — L(E), and
define p : [1,0) — L(E) by setting p; := p}_,, whenever t € [n,n + 1]. Then

p is in P™(A, B), and the formula

v | [KKZ (X0, SB) = KEp(AB),  ([p")izs = [7]

21This is not strictly necessary, but we could not find a convenient treatment of lim. !
groups associated to inverse limit functors over arbitrary directed sets in the literature,
and it takes a little work to exhume the facts we need from any treatment we could find.
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gies a well-defined homomorphism. Moreover, this homomorphism takes im-
age in the closure {0} of the zero element for the asymptotic topology (Defi-
nition 5./), and descends to a well-defined homomorphism

v lim' KK (X,, SB) — KK (A, B)

on the lim"-group.

Proof. We leave the direct check that p is an element of P™(A, B) to the
reader (for this purpose, recall that ¢, — 0 as n — o). To see that v is
well-defined on the product [[, KK7 (X,,SB), let ([p"]);=, and ([¢"])r_o
be sequences in K K7 (X,,, SB) representing the same class in the product
[, KKT (X,,SB), and with images [p] and [¢] in KK (A, B). Then for
each n there is a homotopy (p™*)se[0,1] between them. Using the identification
in Lemma 4.4, define a new function p : [1,0) — L(C[0,1]®FE) by p; := p;°,
for t € [n,n+1]. Then direct checks using the conditions in Lemma 4.4 show
that (p°)sefo,1] is a homotopy between p and ¢, whence [p] = [¢] and we have
well-definedness. The fact that ¢ is a homomorphism follows directly, as
we may assume the group operations are all defined using the same pair of
isometries (s1, $2) satisfying the Cuntz relation.

To see now that the image of the map is contained in {0_}, we must show
that if [p] is in the image, then for every finite subset X < A; and € > 0 there
is t > 7x (p) (see Definition 5.2) and a homotopy passing through P7 (X, B)
connecting p; to e. This is clear, however: by construction of p, there is a
sequence (t,) tending to infinity such that p;, = e for all n, and we can use
cofinality of our sequence (X,,,¢€,) in the directed set X’ of Definition 6.6 to
construct the required homotopies.

For the statement about the lim' group, we must show that if ([p"])%_,
is a sequence in [ [, KK (X,,SB), then the image of ([p"]) is the same as
that of the sequence ([p"*1])®_,. Indeed, say the image of the former is p
and the image of the latter is ¢. Then by construction we have that ¢, = p;, 1,
for all ¢ and some fixed L. The path (p®)so,1] defined by pf := pyysr is a

homotopy between p and ¢, so we are done. O
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We are now ready for the main result of this section. As already com-
mented above, it completes the proof of Theorem 1.1.

Theorem 7.7. Let 7 : A — L(E) be a substantial representation. Then the
map

R liianK;(Xn, SB) - KK} (A, B)
from Lemma 7.6 is an isomorphism onto the closure of zero in KKF (A, B).

Proof. To see that the map is onto, let p € P™(A, B) be an element so that
[p] is in the closure of zero. Using the description of neighbourhood bases
from Lemma 5.5, we may find an increasing sequence (t¢,) in [1,0) such
that ¢, — oo, such that ¢, > 7x, ., (p) for all n, and such that for each
n there is a homotopy (q})seo,1] such that ¢f = p,, and ¢f = e, and such
that ¢ is in P7 (X, B) for all s. For each n, build a path r" : [0,1] —
L(E) by concatenating the paths (¢, )sef0,1]: (Pt)teftntnia]s a0d (@7 ) sef0.1]4
and reparametrizing to get the domain equal to [0,1]. Note that the path
(77)sef0,1] starts and ends at e, and has image contained in P7 (X, B). One
checks directly that r™ lies in P (X,,, SB) using the conditions in Corollary
7.2, and thus we get a class ([r"]) € liianK; (Xn, SB). We claim the image
of ([r"]) in KKE(A, B) is [p].

Indeed, up to reparametrizations (which do not affect the resulting class
in KK} (A, B)), the image of ([r"]) is represented by concatenating the paths

(Q%fs>se[0,1]7 (pt)te[tl,tg]a (qg)se[o,u, (Q%fs)se[o,l]u (pt)te[tz,tg]u
(Q§)se[0,1]>(Q?_S)se[o,l]a (pt)te[tg,t4]7

As each pair (q})sefo1], (¢7—s)sef0,1] consists of the same path traversed in
opposite directions, a homotopy removes all these pairs, so we are left with

the concatenation of the paths

(q%—s)se[o,l]a (pt)te[tl,tﬂ? (pt)te[tz,ts]a (pt)te[ts,tz;]»

or in other words of (g{_,)sejo,1] and (p;)i=¢,. As any element g € P™(A, B) is
homotopic to the path defined by t — ¢, 1 for any fixed L > 0, this path is
homotopic to the original p and we are done with surjectivity.
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For injectivity, let ([p"]);_; be a sequence in [[, KK (X,,SB) that
maps to zero in K Kp(A, B), so there is a homotopy (p*)se[o,1] connecting the
resulting image p to e. Here p is the result of concatenating the functions
p" : [0,1] = £, so for t € [n,n + 1], py = pi",,. For each n, let (¢")sco1]
be the path defined by ¢% := p?, which defines an element of P (X, SB) for
some € and X Schematlcally, we have the followmg picture:

e

T TF e

ax|

zﬂmas@ E ——

For each n, let m(n) be the largest natural number such that the elements
(D7) sef0,1],te[n,n+1] are all in me<n) (Xm@m), B). Note that m(n) — o as n —
by definition of a homotopy, ad that ¢7 is in P . )(Xm(n), B) for all n.
Now, for each n, consider the element —[¢"] + [p"] + [¢" "], which is in
KKT (Ximm), SB) by choice of m(n). This element is represented by the

€m(n)
concatenation ¢”-p™-¢"*!

by Lemma 7.4, so it forms three sides of the ‘square’
(D7) sefo1],te[nn+1] (Pictured as the green square in the diagram above). The
fourth side is the constant function with value e, so —[¢"]+[p"] +[¢" '] = €]

in KK7 )( m(n), SB). Moreover, [e] = 0 by Corollary 6.4, so

[p"] = [¢"] — [q”“] for all KK /mmn) (Xmm), SB) (19)

for all n.

We claim that the existence of the elements ¢" satisfying the formulas in
line (19) shows that original element ([p"])%_, is zero in the lim'-group, which
will complete the proof. Let o : [ [, KK (X, SB) — [, KK (X, SB) be
the map defined by shifting down one unit, so the lim"' group is by definition
the cokernel of 1 — a. Choose a subsequence (n;);2; of the natural num-
bers such that the sequence (m(n;));2, is strictly increasing, which exists as

m(n) — o0 as n — 0.
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For each [ € N, define an element 2" € [ [, KK] (X}, SB) by setting the
component z; in KK, (X, SB) to be

Ty

no._ [pn] <N <N, m(nl) <k<n
0 otherwise )

Note then that
(1—-a)(")=(0,..,0, [p"] ,0,....) —(0,...,0, [p"] ,0,...).

Define .
v:= > a"e| [ KK (Xi, SB);
n=0 k

this makes sense as the sum is finite in each component K K7 (X}, SB) using

that m(n) — o as n — . We have then that (1 — «)(x) is the element

0

nen, and y, where

whose k'™ component is the difference of the elements ([p"])

> ("]

{n|ni<n<ngyr, m(n)=k}

the k' component of y is

(with the empty sum being interpreted as zero). Noting that the difference
between ([p"]);_,, and ([p"]);—; is in the image of 1 — a (as indeed is any
element with only finitely many non-zero terms), it thus suffices to prove
that y is in the image of 1 — a.

For this, for each [ € N, define 2! € ], KK (X}, SB) to be the element

with £ component 27 defined by

- { [qm™0] m(ng) < k < m(ni)
0 otherwise

We have then that (1 — «)(2!) has entries: —[¢™™+V)] in the m(n;)" place;
[¢™™+V] in the m(n;41)™ place; and zero elsewhere. As before, we have
z = >,°, 2" makes sense. It follows from the above discussion that (1—a)(z)
has entries given by

(1 —a)2)e = {

[qm(m)] _ [qm(nl+1)] k = m(n;) for some [
0 otherwise
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On the other hand, we have that

npy1—1 41 —1
R R i D S I/ I Vi S S 1 B
n=n n=ny
Hence (1 — «)(z) = y, and we are done. O

A Alternative cycles for controlled K K-theory

In this appendix, we discuss some technical variants of the groups K K7 (X, B)
that will be useful in the sequel to this work. Throughout this section, A
and B are separable C*-algebras. We will typically assume that A is unital.

As usual, throughout the appendix A and B are separable C*-algebras,
and a representation m : A — L(F) is assumed to take values in the ad-

jointable operators on a Hilbert B-module E.

A.1 Controlled K K-groups in the unital case

In this subsection, we specialize to the unital case and give a picture of the
controlled K K-groups in this case. The basic point is that in this case one
can use honest projections to define these groups rather than just elements
satisfying ||a(p? — p)| < € for suitable a € A and € > 0.

Let A be a unital C*-algebra, and let 7 : A — L(E) be a representation of
A. We write m for the corestriction of the representation to a representation
on7(1la)- E. Note that if 7 is substantial (see Definition 4.1), then 7 is too.

Definition A.1. Let A and B be separable C*-algebras, and let 7 : A —
L(E) be a graded representation of A with associated neutral projection e
as in Definition 4.1. Let X be a finite subset of the unit ball A; of A, and
let € > 0. Define P7P(X, B) to be the set of projections in L(F) satisfying
the following conditions:

(i) p—eisin K(F)
(i) ||[p,a]|l < € for all a € X.
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Equip P7?(X, B) with the norm topology it inherits from £(FE), and define
KKIP(X,B) := m(PrP(X, B)), i.e. KKIP(X, B) is the set of path compo-
nents of P7P(X, B).

Definition A.2. Let 7 : A — L(FE) be a substantial representation of A,
and let K K™ (X, B) be as in Definition A.1. Let s;,s, € B(£?) be a pair
of isometries satisfying the Cuntz relation sisj + sqs5 = 1, considered as
elements of £(F) via the inclusion B(¢?) < L(FE) of Lemma 4.2.

Define a binary operation on K K™?(X, B) by

[p] + [4] = [s1ps] + s2q53]

(it is clear that this definition respects path components, so really does define
an operation on KK™?(X, B)).

To show that KK™P(X, B) is a group, we will need an analog of Lemma
6.3. Write “~” for the equivalence relation

Lemma A.3. Fiz notation as in Definition A.2. Let e € L(E) be the neutral
projection, let p be an element of PTP(X, B), and let v be an isometry in the
canonical copy of B((?) < L(E) from Lemma /J.2. Then the formula

vpv* + (1 —wvv¥)e
defines an element of PTP(X, B) that is in the same path component as p.

Proof. The proof is essentially the same as that of Lemma 6.3, so we just
give a brief sketch, pointing out differences where necessary. As in the proof
of Lemma 6.3, we fix § > 0, and choose an infinite rank projection r € B(¢?)
such that ||(1—=7)(p—e)| < J just as in that proof. Let x : R — {0, 1} be the
characteristic function of (1/2, ), and define ¢ := x(rpr + (1 — r)e), which
is an element of P7?(X, B) by the computations in the proof of Lemma 6.3,
at least for suitably small . Moreover, for § suitably small, the homotopy

[0,1] = L(E), s~ x(sp+(1—s)q) (20)

shows that p and ¢ define the same class in P7?(X, B) (here we use that
there is some v = ~(d) such that v — 0 as § — 0, and such that |x(sp +
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(1—s5)q) —p| <~ for all s). The proof is now finished analogously to that of
Lemma 6.3 by considering the element u := vr + w* € B({?) < L(E) defined
just as in that proof, using the element ¢ above in place of the element ¢
from the proof of Lemma 6.3, and using the homotopy in line (20) where the
homotopy s +— sp + (1 — ¢) is used in the proof of Lemma 6.3. O]

Lemma A.4. Fiz notation as in Definition A.2. Then KKTP(X, B) is an
abelian group, and does not depend on the choice of Cuntz isometries s; and

S9.

Proof. The fact that K K™F(X, B) is an abelian semigroup with operation
not depending on the choice of si, s, proceeds in exactly the same way as
Lemma 4.7. The fact that it is a monoid with identity element [e] follows
directly from Lemma A.3 just as in Corollary 6.4. The proof that inverses
exist carries over essentially verbatim from the proof of Proposition 6.5 (with

slight simplifications, as estimates of the form “|a(p* — p)| < €’ no longer
need to be checked). O

Consider now the collection of all pairs (X, €), where X is a finite subset
of A; and € > 0, made into a directed set as in Definition 6.6. Our goal in
the rest of this section is to show that there are isomorphisms

KL(A, B) > lim KK™?(X, B).

and
lim! K K™P(X,SB) — {0},

where {0} is the closure of KK (A, B). The proof proceeds via the construc-

tion of certain intertwining maps.

Definition A.5. Fix notation as in Definition A.2. Provisionally define
¢ POP(X,B) > PH(X,B), prp+(1-1ae.

Lemma A.6. The map ¢ from Definition A.7 is well-defined, and descends
to a homomorphism

¢ : KK™?(X,B) > KK (X, B).
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Proof. 1t is straightforward to see that ¢ is a well-defined map that takes
homotopies to homotopies and so descends to a well-defined set map ¢, :
KKI'?(X,B) - KKT(X,B). Let s1,s2 be Cuntz isometries inducing the
group operation, and define t; := 145, and ¢y := 1489, which are a pair of
Cuntz isometries in £(14F) which we may use to define the group operation
on KK™P?(X, B). We compute that for p,q e P7*(X, B)

tpty + taqty + (1 —1a)e = s1(p+ (1 — 1a)e)s] + sa(q + (1 —14)e)ss
which implies that ¢.([p] + [q]) = ¢«[p] + ¢«[q] as claimed. O

Definition A.7. Fix notation as in Definition A.2. Assume moreover that
e < 1/8 and that X contains the unit of A. Let y be the characteristic
function of (1/2, ). Provisionally define

U PHX, B) = PiL(X,B), p— x(lapla).

Lemma A.8. The map ¢ from Definition A.7 is well-defined and descends

to a well-defined homomorphism

Vet KKI(X, B) - KKI'2(X, B).

Proof. First, we check that 1 is well-defined, and takes image where we claim.
Let p be an element of P7(X, B). As we are assuming that 1, is in X, we
have that

I, La]l < e (21)

Hence

|(Lap1a)® = (Lapla)| < [1aplap — Lap|||14]
<

LAl (A, 12 + [1a(® = )|
< 2e€.

The polynomial spectral mapping theorem thus implies that the spectrum
of 14ply is contained in the v/2e-neighbourhood of {0,1} in R. As e < 1/8,
we have that v/2¢ < 1/2 and so the characteristic function x of (1/2,0) is
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continuous on the spectrum of 14pl4. Hence x(14pla) makes sense by the

continuous functional calculus and moreover
|Lapla — x(1apla)] < v2e. (22)
Hence we see that for any a € X,

IIx(1ap1a), al| < |[x(Lapla) = Lapla,a]| + [[Lapla, a]| < 2v2e + e (23)

Putting the discussion so far together, x(14pls) is a projection in L(E)
such that |[x(1apla),a]| < 54/e for all @ € X. We have moreover that
lapla—1lae =1a(p—e)lyg € K(14F), whence also x(1apla)—1ae € K(14E).
In conclusion, we see that x(14pla) defines an element of P;\l/’f(X ,B). We
have thus shown that 1 is well-defined.

It is straightforward to check that homotopies pass through the above
construction, so that ¢ induces a well-defined map of sets

Uy KK (X, B) — KKI'2(X, B).

Finally, to see that v, is a homomorphism, we fix Cuntz isometries s, s9
inducing the group operation in K K7 (X, B). As in the proof of Lemma A.6,
we may use the Cuntz isometries t; := 1451 and t5 := 1455 to define the group
operation on KK, ;\%(X , B). Using naturality of the functional calculus and
the fact that s; and sy commute with 14, we see that for p,q e KKT(X, B)

we have that
X(La(sipst + s2¢53)1a) = tix(LapLla)t] + tax(Lagla)ts,
and thus that ¥, ([p] + [¢]) = ¥«[p] + ¥«[q], completing the proof. O

Lemma A.9. Fiz notation as in Definition A.2. Assume moreover that
€ < 1/8 and that X contains the unit of A. Consider the diagrams

KK~ (X, B) KK™(X,B) (24)

o Jén

KK#(X,B) — KK'?(X, B)
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and

KK™(X,B) KK3 (X, B) (25)
b KKI'(X, B)
.|

KKJ'(X, B) == KK['*(X, B)

where the horizontal and diagonal maps are the canonical forget control maps,

defined analogously to Remark 6.7, part (v). These both commute.
Proof. For any p € P ?(X, B) we have that ¢)(¢(p)) = p, and so the diagram

in line (24) clearly commutes. For the diagram in line (25), we need to show
that if p € P.(X, B), then the classes of p and of x(1apla) + (1 — 14)e in
KKy (X, B) are the same. For this, we concatenate two homotopies. First,

consider the homotopy
t—ppi=x(lapla) + (1 —14)(te + (1 —t)p), te]0,1].

As ap; = ax(1aply) for all a € A and all ¢ € [0, 1], we see that a(p? —p;) = 0.
Moreover, as A commutes with e, as |[p,a]| < € for all « € X, and as
I[x(1apla),a]| < 54/€ for all a € X, we see that [[ps, a]l| < 5y/€ + € < 64/¢€
for all @ € X. Hence this homotopy passes through Pg ﬁ(X , B), and connects

X(1apla) 4+ (1 —14)e and x(1apla) + (1 — 14)p.
For the second homotopy, note first that lines (22) and (21) imply that

Ix(Lapla) — Lapl < [x(Lapla) — Laplal + [1a[14,p]| < V2e +e  (26)
Consider now the homotopy
t— q = (1_t)X(1Ap1A) +t1Ap+ (1—1,4)]), te [O, 1] (27)
Write 7 := (1 — #)x(14pla) + tlap, so we have |r, — x(1apla)|| < v/2€ + ¢
for all ¢ by line (26). Hence for any a € A,
la@; = a)| = la(r? =)l
< fre(re = x(Lapla)) |l + [ (x(Lapla) — re)x(Lapla)| + lre — x(1apla)|

< 3(v2¢e +e).
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Moreover, for any a € X, lines (23) and (21) give that

I[ge all < |Dx(TapLa), al| + [[Lap, all| + |[(1 = La)p, @] < V/5e + 2e.

Putting all this together, the homotopy t — ¢; from line (27) passes through
KK;/E(X, B). As this homotopy connects x(14pla) + (1 — 14)p and p, this
completes the proof. n

We are now in a position to prove the following result.

Proposition A.10. Let A and B be separable C*-algebras with A unital. As
in Definition 6.0, make the collection of pairs (X, €) with X a finite subset
of Ay and € > 0 into a directed set. Let m : A — L(F) be a substantially
absorbing representation of A on a Hilbert B-module. Then with notation as

above there are isomorphisms
KL(A,B) - lim KK™?(X, B).

and
lim' K K™?(X,SB) — {0},

where the limits are taken over the directed set of Definition 6.6 and {0} is

the closure of 0 in KK (A, B). Moreover, there is a short exact sequence
0 — lim'KK™?(X,SB) - KK(A, B) — lim KK™"(X, B) — 0.

Proof. Thanks to Theorems 6.9 and 7.7 respectively, it will suffice to show
that
lim KK™P(X,B) ~lim KK7(X, B) (28)

and
lim' KK™P(X, B) =~ lim' KK” (X, B). (29)

Using Lemmas A.6, A.8, and A.9 we can construct an increasing sequence
(X,,) of finite subsets of A; with dense union and that all contain the unit,
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a sequence (€,) in (0,1/8) that tends to zero as n — o0, and a diagram

.. —— KK7 (X,,B)—= KK* (X, 1, B) KKT(Xy,B)

(n) (n—1) (1)
* * *

o ——= KK (X, B) —= KK'"?(X,,_1,B) — - - —— KKT"?(X,, B)

(30)

where: the horizontal maps are forget control maps; the maps labeled (;kan)

are from Lemma A.6; the maps labeled win) are from Lemma A.8; each
subdiagram of the form

KKT (X,,B)

€n

o
¢£l<n)T \

KKZ;’p(Xn, B) — KKT'P (Xn-1,B)
and each of the form

KK? (X,, B) — KK* (X, 1, B)

d)(n_l)
m T *

KKETrnl—’pl (Xn—la B)

commutes. Now, by assumption that (X, ) is increasing and has dense union
in A;, and by assumption that ¢, — 0, the sequence (X,,¢€,) is cofinal
in the directed set of Definition 6.6. Hence by Remark 6.7 part (vii) and
Remark 7.5, the top row of diagram (30) computes Jggle) KKT (X, B), while

the bottom row computes l(l)r? : KK™P(X,B). The isomorphism in line (28)

follows directly from this. The isomorphis in line (29) also follows directly
from this and the commuting diagram of line (30), but with B replaced by
SB. O

A.2 Unitally absorbing representations

In this subsection, we show a form of representation-independence for the

groups from the previous subsection.
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First, we recall a definition, which is essentially [25, Definition 2.2] (com-
pare also condition (2) from [25, Theorem 2.1]).

Definition A.11. Let A and B be separable C*-algebras with A unital, and
let F' be a Hilbert B-module. A representation 7 : A — L(F') is unitally
absorbing (for the pair (A, B)) if for any Hilbert B-module E and ucp map
o:A— L(E), there is a sequence (v,,) of isometries in L(E, F') such that:

(i) o(a) —vim(a)v, € K(F) for alla e A and n e N;
(ii) |o(a) —vim(a)v,| — 0 as n — oo for all a € A.

The representation m is strongly unitally absorbing if it is an infinite ampli-

fication of an absorbing representation.

Remark A.12. Let A and B be separable, with A unital as above. Assume
also that at least one of A and B is nuclear. It follows from [12, Theo-
rem 5] that if 7 : A — B(¢?) is a faithful unital representation such that
71 (K(¢?)) = {0}, then the amplification 1 ® 7 : A — L({* ® B) is unitally
absorbing. We will not use this remark in the paper, but it is important for
justifying the picture of controlled K K-theory that we use in the introduc-
tion.
We will need a lemma relating unitally absorbing representations to strongly

absorbing representations.

Lemma A.13. Say A and B are separable C*-algebras with A unital, and
let m: A — L(F) be an absorbing representation. Then the corestriction of
m of ™ to a unital representation m : A — L(14 - F) is a unitally absorbing

representation.

Proof. Let 0 : A — L(FE) be a ucp map with F' a Hilbert B-module. As 7 is
absorbing, there is a sequence (v,) of isometries in L(E, F') such that

o(a) —vim(a)v, € K(F)
for all a € A and n € N, and such that
lo(a) — vpm(a)vn] — 0
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as n — oo for all @ € A. As o is unital we in particular have that |1g —
vin(1a)v,| — 0 as n — 0. Set w, := w(1la)v, € L(E,m(14)F) < L(E, F).
We compute that

wiw, — 1p =vit(lx)v, — 1g

so wkw, is a compact perturbation of 1g, and |w¥w, — 1g| — 0 as n — .
Passing to a subsequence, we may assume in particular that w}w,, is invertible
for all n. Note then that

Vo (wiw,)V? = 1pe K(E), and (wfw,) *—1p —0asn — . (31)

Define u,, := w, (w*w,)~"/2. Then (u,) is a sequence of isometries in £L(E, 7(14)F)
such that

—-1/2 —-1/2

o(a) —uim(a)u, = o(a) — (wiw,) ™ “v,m(a)v,(wWiwy,)

for all @ € A. This computation combined with line (31) shows that (u,) has
the properties needed to show that m; is unitally absorbing. O

The following corollary is immediate.

Corollary A.14. Say A and B are separable C*-algebras with A unital, and
let m: A — L(F) be a strongly absorbing representation on a Hilbert B-
module. Then the corestriction of my of ™ to a unital representation m: A —

L(14-F) is a strongly unitally absorbing representation. ]

The following lemma, which follows ideas of Kasparov [12] (compare also
(25, Theorem 2.1]), says that unitally absorbing representations are essen-
tially unique.

Lemma A.15. Say A and B are separable C*-algebras with A unital, and
letm: A— L(F) and 0 : A — L(E) be unitally absorbing representations.
Then there is a sequence (uy) of unitaries in L(E, F') such that

(i) o(a) —uim(a)u, € K(E) for allae A and n € N;

(i1) |lo(a) — uim(a)u,l| — 0 as n — o for all a € A.
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Proof. Let (0®, E*) be the infinite amplification of (o, F'), and let (v,) be
a sequence of isometries in L(E*, F') such that vi7(a)v, — c®(a) — 0 for
all a € A, and such that v¥7(a)v, — 0®(a) € K(E®) for all a € A and all n.
Using that

(m(a)on — vn0™(a))*(w(@)vn — vao(a)”)

equals
vim(a*a)v,—o*(a*a)—(vim(a*)v,—o®(a*))o® (a)—c® (a*)(vin(a)v,—c™(a))

for all n and all a € A, we see that we also have 7(a)v, —v,0%(a) € (E*, F)
for all n and all a € A, and that ||7(a)v, — v,0*(a)| — 0 as n — oo for all
ace A

Now, for representations ¢ : A — L(G) and ¥ : A — L(H) on Hilbert
B-modules, let us write ¢ ~ v if there is a sequence of unitaries (u,) in
L(G, H) such that ¢(a) — uip(a)u, € K(G) for all a € A and n € N and
lp(a) — uv(a)u,| — 0 asn — oo for all a € A. Let ul € LIF,E®F)
be the unitary built from v, as in Lemma 2.8. Then the sequence (uX) in
L(F,E® F) shows that 7 ~ 0 @ w. As the situation is symmetric in o and
m, we also see that o ~ o @ . As ~ is transitive, we see that m ~ ¢ and are

done. =

Remark A.16. Using [25, Theorem 2.4], if A and B are separable with A
unital, there always exists a unitally absorbing representation 7 : A — L((*®
B). Hence if 0 : A — L(FE) is any unitally absorbing representation, we must
have that F is isomorphic as a Hilbert B-module to /> ® B, i.e. the standard
Hilbert B-module ¢? ® B is the only Hilbert B-module that can admit a
unitally absorbing representation. A similar remark applies in the absorbing
case, with essentially the same justification.

We will need a unital variant of Definition 4.1.

Definition A.17. A representation 7w : A — L(FE) is unitally substantial if
it comes with a fixed grading (7, E') = (7o @ 7o, Eo ® Ep) such that (mg, Ep)
is strongly unitally absorbing.
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Our main goal in this section is the following result, which says essen-
tially that any unitally subs absorbing representation can be used to compute
K L(A, B) as an inverse limit. For the statement, let us say that a unitally ab-
sorbing representation (, F) is balanced graded if comes with a fixed grading
of the form (7o @ 7o, By @ Ey), with (7o, Ep) unitally absorbing.

Proposition A.18. Let A and B be separable C*-algebras with A unital.
Let the collection of pairs (X, e€) consisting of a finite subsets X of Ay and
€ > 0 be made into a directed set as in Definition 6.6. Then for any unitally

substantial representation m of A we have that
KL(A,B) - lim KKI?(X, B).

and
lim' K K™ (X, SB) — {0},

where {0} is the closure of 0 in KK (A, B). Moreover, there is a short exact
sequence

0 — lim'KK™(X,SB) - KK(A,B) — lim KK™ (X, B) — 0.

Proof. Let k : A — L(F) be a substantial representation as in Definition 4.1
(whence non-unital), with decomposition k = kg@® ko. Proposition A.10 says
(with notation given there) that

lim K K"?(X, B) ~ KL(A, B).

On the other hand, x; decomposes (with obvious notation) as ro 1@ kg1, and
Ko, is strongly unitally absorbing by Corollary A.14. Hence x; is unitally
substantial. It thus suffices to prove that

lim K K™ (X, B) = lim KK’?(X, B)

and
lileKZ’p(X, SB) ~ lileKf’p(X, SB)

for any unitally substantial representations 7 and o.
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Let then (m, E') and (o, F)) be unitally substantial representations. For
each (X,¢€), Lemma A.15 gives us a unitary v = u(X,¢) € L(F,F) such
that ur(a)u* — o(a) € K(F) for all a € A, such that |um(a)u* — o(a)| < €
for all @ € X. We may assume also that if e, and e, are the respective
neutral elements, then ue,u* = e, and that conjugation by u preserves the
canonically included copies B(¢?) < L(E) and B((?) < L(F) of Lemma 4.2:
indeed, this follows by writing each of (7, E') and (o, F') as a sum of unitally
absorbing representations and applying Lemma A.15 to get some unitary uy,
and then amplifying ug to get u.

It follows from this and direct checks that conjugation by u gives a well-
defined map

ad, : KKI?(X,B) - KK3"(X, B).

The situation is symmetric, so we also get
ad,« : KK (X, B) > KK;*(X, B).

Now, to deduce the existence of an isomorphism lim K K™?(X, B) ~ lim K K??(X, B)
it will suffice to show that the diagram

KK?W(X? B) _>KKZLTe7p(X7 B)
Ladu(X,e) Ta’du(X,Qe)*

KK3P(X, B) == KK37(X, B)

commutes, where the unlabeled arrow is the canonical forget control map
(we also need commutativity of the corresponding diagrams with the roles
of o and m reversed, but this follows by symmetry). The isomorphism
lim' K KTP(X, SB) =~ lim' K K7 (X, SB) will follow similarly on replacing B
with SB. -

So, we need to show that if v := u(X,2¢)*u(X,2¢) € L(F), then ad,
induces the same map KK™F(X, B) - KK;"(X, B) as the forget control
map. Let sq, 89 € L(E) be Cuntz isometries used to define the group opera-
tion. As the neutral element e = e, defines the identity in K K" (X, B) for
any 0, it suffices to prove that s;vpv*sy + sses defines the same element of
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KKP(X,B) as s1ps} + sgess. Define w := s1vsf + s85, which is unitary.
For t € [0, 7/2] define

wy 1= cos(t)sys] + sin(t)sys; — sin(t)sas] + cos(t)s2s5.

Note that w; is unitary and commutes with both A and e. Direct checks
(that we leave to the reader) show that

wpwwy (s1psy + sas3)wpwwy, te[0,7/2]

defines a continuous path in PgP(X, B) that connects sipsi + sas5 and

€

51Upv*sy + 5955, completing the proof. O

Remark A.19. (We thank Claude Schochet for this remark). Let 7 be a
unitally substantial representation of A. Standard separability arguments
show that for each ¢ > 0 and finite X < A;, the group KK ?(X,SB)
is countable. It follows from an argument of Gray [10, page 242] that a
lim' group associated to a sequence of countable groups is either zero or
uncountable. Hence lim' K K™ (X, SB) is either zero or uncountable. Thus
Proposition A.18 impii_es that the closure of 0 in KK (A, B) is always (for A
and B separable, and A unital) either zero or uncountable.

A.3 Matricial representations of controlled K K-groups

In this subsection we give a formulation of controlled K K-theory in terms
of matrices, which is perhaps closer to standard formulations of elementary
C*-algebra K-theory. Although our main definitions are more convenient for
establishing the theory (particularly with regard to the topology on KK),
this definition will make computations easier in our subsequent applications.

For a representation 7 : A — L(FE) we use the amplifications 1, ® 7 :
A — M, (L(FE)) to identify A with a (diagonal) C*-subalgebra of M, (L(E))
for all n.

Definition A.20. Let A be unital, and let 7 : A — L(F) be a unital
representation. Let IC(E)T be the unitization of IC(E).
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Let X be a finite subset of Ay, let € > 0, and let n € N. Define Pg:é”(X, B)
to be the collection of pairs (p, q) of projections in M, (IC(E)") satisfying the

following conditions:
(i) |[p,a]| < € and |[g,a]| < € for all a € X;

(ii) the classes [p],[¢q] € Ko(C) formed by taking the images of p and ¢
under the canonical quotient map M, (IC(E)*) — M, (C) are the same.

If (p1, q1) is an element of P72 (X, B) and (ps, g2) is an element of P72 (X, B),
define

0 0 m,m
(pl @p%Ql@QQ) = b ) N EPernz 6(X B)
0 p2 0 @

Define
Prm(X, B) |_| Prm(X, B),

i.e. Pr (X, B) is the disjoint union of all the | |, Pr™(X, B).
Equip each P]"(X, B) with the norm topology it inherits from M, (L(E))®
M, (L(E)), and equip Pzt (X, B) with the disjoint union topology. Let ~ be

the equivalence relation on P3% (X, B) generated by the following relations:

(i) (p,q) ~ (p@®r,q®r) for any element (r,r) € PEe (X, B) with both
components the same;

(i1) (p1,q1) ~ (p2,q2) whenever these elements are in the same path com-
ponent of Py (X, B).*

Finally, define K K™™ (X, B) to be Py (X, B)/ ~

Lemma A.21. Let A and B be separable C*-algebras with A unital. Let
X < A be a finite set, and let € > 0. If 1 : A — L(E) is any unital
representation, then K K™ (X, B) is an abelian group.

22Equivalently, both are in the same P](X, B), and are in the same path component
of this set.
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Proof. 1t is clear from the definition that K K7™ (X, B) is a monoid with
identity element the class [0,0]. A standard rotation homotopy shows that
KK (X, B) is commutative. To complete the proof, we claim that [q, p]
is the inverse of [p,¢]. Indeed, applying a rotation homotopy to the second

variable shows that (p@q, ¢®p) ~ (pDq, p@q), and the element (pBq, pAq)
is trivial by definition of the equivalence relation. ]

Now, let 7 : A — L(FE) be a unitally substantial representation as in Def-
inition A.17, i.e. there is a decomposition (7, E) = (1o @® 7o, Eo @ Ey), where
(70, Eo) is a strongly unitally absorbing (ungraded) representation. Under
this identification, we have a canonical identification L(E) = My(L(Ep)) un-

. L : 0
der which the neutral projection e, on F corresponds to the matrix

Our goal in this section is to establish isomorphisms
KL(A,B) - lim KK*™(X, B)

and
lim! K K™™(X,SB) — {0}

where the limits are (as usual) taken over the directed set of Definition 6.6.
First, we provisionally define

To.m 10
(b:P:’p(X?B) - 2757 (X)a p— (pa (0 O) )7

where we have used the identification L(E) = My(L(E)) to make sense of
the right hand side.

Lemma A.22. The map ¢ above is well-defined, and descends to a group
homomorphism

¢ : KK™ (X, B) — KK™™(X, B).

0
Proof. Using the correspondence e, < 00 it is not difficult to see that

the image of ¢ is indeed in Pyy™ (X, B). It is also clear that ¢ takes ho-
motopies to homotopies, so descends to a well-defined map of sets ¢, :
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KKI?(X,B) - KK™(X,B). It remains to show that this set map is a

homomorphism. For this, let s1, so € B(£?) < L(F) be a pair of Cuntz isome-

tries inducing the operation on K K7?(X, B). For simplicity of notation, let
10

us write e = (0 O) € My(K(Ep)"). Then for [p],[¢] € KKIP(X,B), we

see that

d«[p + q] = [s1ps] + 52¢53, €]

(the entires on the right should be considered as matrices in My (K(Ep)™)).
According to the definition of the equivalence relation defining K K7?(X, B),
this is the same element as

[s1ps] + s2qs5 De,e Del.

For t € [0, 7/2], write

t) —sin(t
up = $15] ® 1o + (8255 ® 12)(12 ® (COS( ) sin( )))

sin(t)  cos(t)

(here 15 € M5(C), so we are considering the element above as an element of
L(E)® My(C) = My(L(Ey)) ® M3(C)). Consider now the path

(ug(s1psT + s2qss @ e)uy, u(e @ e)uy), te[0,m/2]. (32)

We have that w(e @ e)uf = e@ e for all t. As s;ps} + s2qss De—ePe €
M, (K(Ep)), we thus see that

My(K(Ep)) 3 u(s1ps] +s2qss®e)uy —ui(e®e)uy = uy(s1ps]+s2qs5de)u; —eDe.

It follows from this that w,(s1ps} + s2qs5 @ e)u; is in My(K(Ep)™) for all
t € [0,7/2], and therefore the path in line (32) passes through P;y™ (X, B).
As such, it shows that in K K™™(X, B) we have the identity

[s1ps] + s2qs5 De,e D e] = [s1ps] + saesh @ s2qs; + s1est, e Del.
As the left hand side above is ¢.[p + ¢] we thus get
b«[p + q] = [s1ps] + s2e55, €] + [S2qs5 + sqes5, €].
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To complete the proof, it this suffices to show that [s1ps] + sqesh,e] =
o«[p] and [sagss + sqesy,e] = o4q], i.e. that [sips] + sqess, e] = [p,e] and
[s2gsh + sqaesh,e] = [q,e]. These identities follow directly from Lemma A.3
(the first with v = s, and the second with v = s5), which completes the
proof. O

We now define a map going in the other direction to ¢, which is unfor-
tunately more complicated. To start, for each n, fix a unitary isomorphism
v, € B(C?® 2, (£%)®?") such that if p, : (£2)P*" — (£2)®2" is the projection
onto the first n components, then v,p,v¥ = e, where e is (as usual) the pro-
jection of C* ® % onto ¢? arising by projecting C? onto its first coordinate.
Use the usual (compatible) identifications of E with C2®/*® F and E, with
(2QF for some Hilbert module F, identify B(C?*®/¢?, (£%)®?") with a subspace
of L(E, E$®™) and consider v, as an element here. Up to the canonical iden-
tification L(E$*") = Ma, (L(Ey)), we thus see that v, My, (L(Ey))vi = L(E),

and that
1 0\ .
Up, vy = e,
00

where the entries of the matrix on the left are understood as n x n blocks.

Now, let (p,q) be an element of P (X, B) for some n. As the images
of p and ¢ under the canonical quotient map o : M, (K*) — M, (C) are the
same in Ko(M,(C)), there is a unitary u € M, (C) such that o(p) = uo(q)u*.
Define

1 — uqu® uqu®

* 1— *
V= ( wan wan ) v, € L(E, EP*™).

Provisionally define a map

0
b PRm(X, B) — PIP(X, B), (p,q)—v* [© v,
’ 0 1—uqu*

Lemma A.23. The map 1 above is well-defined, and descends to a group
homomorphism
Ve : KK™™(X,B) > KK;*(X, B)

that does not depend on the choice of u or v,.
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Proof. We first have to see that 1 takes image where we say. For simplicity
of notation, let us replace ¢ with ugu*, so we have that p — ¢ is in M, (K).
Hence

S I R TR
N [ I

is in My, (K), or in other words

(S [ Y N )

is in Ms, (K). Conjugating by v,, and identifying L(E) = My(L(Ey)) with
the top left corner of Ms, (L), and also recalling the correspondence e, <«

10
, we see that
«( ¢ 1—q\(p O q 1-—g¢q
’Un Up — €
1-q ¢ 0 1—gq/\1—q ¢

is in My (KC(Ep)). It is moreover not difficult to see that the projection

O I R TR

commutes with elements of X up to error 5e. At this point, we have that
1 takes image where we claimed, so indeed does define a function ¢ :
(X, B) — PLY(X, B).

We now pass to the quotient on the right hand side, so getting a map
vy, + PE(X,B) - KKP(X,B). We will show that this map does not
depend on the choice of u or v,, which will certainly imply the same thing
for 1, once we show the latter exists. To see that ¢, does not depend on
the choices of u such that o(p) = uo(q)u*, note that if U,(C) is the unitary
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group of M,(C), then the collection of all such unitaries is homeomorphic
to a(p)U,(C)o(q) x (1 — a(p))U,(C)(1 — o(q)), so path connected. Hence
any two such choices give rise to homotopic elements of P2.”(X, B). One can
argue that 1, does not depend on the choice of v,, similarly: any two such
choices are connected by a path that passes through such elements.

We now show that ¢ descends to a well-defined map ¢, : KK™"™(X, B) —
KKZP(X,B). First we look at part (ii) of the definition of the equivalence
relation defining K K7™ (X, B), so let (pt, g¢)efo,1] be a homotopy in some
Prom™(X, B). Using for example Lemma 4.8 we may choose a continuous path
of unitaries (u¢)seo1) in M, (C) such that o(p;) = wo(q)uf for all t € [0, 1],
and use these to define ¢.[p, @] for each t. From here, it is straightforward
to see that 1 takes homotopies to homotopies, so we are done with this part
of the equivalence relation.

For part (i) of this equivalence relation, we compute the image of (p @
r,q @) under ¥ as follows, where p,q € M, (K(FEy)") and r € My (K(Ep)™)
for some n, k € N. Let uw € M,(C) be a unitary such that o(p) = uo(q)u* in
M, (C), and set ¢’ = uqu*. Then one computes that ¢ sends (p@r,q®r) to

dpd +1—¢ 0 qp(1—¢) 0
0 1 0 0
U:; Un+k (33)
Tla-gwd 0 A-gp—¢) of ™"
0 0 0 0

(the odd rows (respectively, columns) have height (resp. width) n, and the
even rows (resp. columns) have height (resp. width) k). On the other hand,

¥ sends (p, q) to

o dpd +1—-¢  ¢p(1—4¢) ; (34)
"\ 1-¢wd A-¢wl-4q)) "

so we must show that the elements in lines (33) and (34) define the same class
in KKXP(X, B). Let now i : E®*" — E®*™% be the canonical inclusion,
and let w, := iov, € B(C2Q2, ()20 < £(E, E2™™M). Set v := v*, wp,
which is an isometry in B(¢?) < L(FE). Looking back at line (33), we have
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that

dpd +1-¢ 0  ¢p(1—-¢) 0
o 0 1 0 0],
n n+k
T a-dwd 0 A-gpi—¢) of "
0 0 0 0
dpd +1—4q 0 ¢p(1—¢) 0 0000
_ 0 0 0 o, . 0100l
SR = q)pd 0 (I—@)p(1—¢) o P TR lo 0 0 of M
0 0 0 0 0000

The terms on the left and right above are equal to

L(dpd +1—-¢  ¢p(1—-4¢)
UU” 1 A / 1 o 1 ]
1—=q)pd (1—-¢)p(l—q

)> vv* and (1 —owv¥)e

respectively. Putting all this together, we see that

| o fdpd +1-¢  dp(1-¢) f
Vu[p@r, q@r] = [vvn ( 0wt (1l — q’)) v, 0* + (1 —wvv )e].

Lemma A.3 implies that the class on the right equals the class of the element
in line (34), however, so we are done with this case of the equivalence relation
too.

At this point, we know that v, : KK ™(X,B) - KK:*(X,B) is a
well-defined set map. It remains to show that v, is a group homomorphism.
Let then (p1,q1) and (ps, o) be elements of Pro™(X, B) and P07 (X, B)
respectively. For notational simplicity, assume p; — ¢; € M, (K(Ep)) for i €
{1,2} by conjugating by an appropriate unitary as in the definition of 1; this
makes no real difference to the computations below. The sum [py, 1]+ [p2, ¢2]
is represented by [p1 ® p2, 1 @ ¢2], and 1, this is mapped to the class of the
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product

q1 0 1—q 0 pr O 0 0
" 0 7 0 1-g|]0 po O 0
v
e 1-— a1 0 a1 0 0 0 1-— a1 0
0 1— q2 0 aq2 0 0 0 1-— (p)
73] 0 I—q 0
0 0 1-—
b P vnine (35)
I—q 0 a1 0
0 I—q 0 q2

Let now s be the permutation unitary in B((¢2)®2mtn2)) < £ EP2mtn2)y
such that conjugation by s flips the second and third rows and columns in
the matrices above. Let wy := i,,v,,, where i,, : E*™ — E?Q(nﬁm) is
the natural inclusion, and similarly for wy. Set s; := v} ., sw; and sy :=
VE L. SWa, SO S1, o € B((?) = L(F), and satisfy the Cuntz relation s;s7 +s253
(this follows as wiw} + wowi = 1). According to Lemma A .4, we may use $;

and sy to define the group operation on K K:*(X, B), and so

Vel 1, 1] + Vlp2, ¢2]

_ * 31 l—aq P1 0 q1 l—aq #
= | S1U,, Up, 81
1—q q1 0 1-q 1—q q1
1-— 0 1—
4 slv;’;Q q2 q2 P2 q2 q2 vm.s; '
1—q q2 0 1—-q 1—q q2

A direct computation shows that this equals the element in line (35) above,
O

however, so we are done.

We need one more technical lemma before we get to the main point.

Lemma A.24. Let A and B be separable C*-algebras with A unital. Let
7 : A — L(F) be a unitally substantial representation of A on a Hilbert
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B-module. Let X < Ay be finite, and let € > 0. Consider the diagrams

KK™#(X, B) — KKL"(X, B) (36)

L

KKm™m(X, B) == KK™™(X, B)

and

KK3P(X, B) == KK;"(X, B) (37)
w*] l(ﬁ*
KK:O’m(X, B) —>KK§€O’m(X, B)

where the horizontal arrows are the canonical forget control maps. These
commute.

Proof. We first look at diagram (36). We compute that for p € P7P(X, B),

1-— 0 1-—
¢¢(p)=11;(1i€ ee> <](; 1—6) (1ie ee>02'

The entries appearing above can be identified with 2 x 2 matrices, with

diagonal matrix units corresponding to e and 1 — e, and p corresponding to

1—
the matrix pe epl ) . With respect to this picture, one
(1—e)pe (1—e)p(l—e)
computes that the above equals
epe 00 ep(l —e)
o 0 10 0 y
2 0 00 0 >
(1—e)pe 0 0 (1—e)p(l—e)

Define
i: B - E$* (v,w) — (v,0,0,w),

and define v := v}i, which is an isometry inside the copy B(¢?) < L(E) from
Lemma 4.2. One computes using the above that

Yo(p) = vpv* + (1 —vv¥)e,
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whence [¢¢(p)] = [p] by Lemma A.3, as required.

Now let us look at diagram (37). Let (p,q) be an element of P7™ (X, B)
for some n. For notational convenience, assume that p—q € M, (K(Ey)); this
can be achieved by conjugating by a unitary in M, (C), and helps streamline
notation below, while making no real difference to the argument. Again

10
adopting the notation e for (0 0) , we compute that

«( ¢ l—q\(p O qg 1l—gq
o (o, )60 1))

Let 0y,_2 be the zero element in My, o()C(Fo)™). Then the element above
has the same class as

«( a 1—q)(p O q 1-—gq >
n 0 n—2, 0 n— .

(38)
Now, let p, : E®?" — E$? be defined by projecting onto the first two coordi-
nates, and define w, := v,p,, which is a co-isometry in B((£2)®?") < L(E$")
with source projection the projection onto the first two coordinates in E$>".
The space of all co-isometries in B((¢£?)®2") with source projection dominat-
ing the projection onto the first two coordinates is connected* (in the norm
topology). Hence we may connect w,, through such co-isometries to one that
acts as the identity on the first two coordinates, from which it follows that
the element in line (38) represents the same class as

1— 1-—
Wn, <,U:; 1 1 p 0 1 1 Un@OQn—Q)w:v
1—q ¢ 0 1-¢q)\1=-q¢ ¢

Wy (€ @ Ogp—2)wi ) )

23If n = 1, such co-isometries are automatically unitary, but this is still a norm-connected
space.
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Computing, this equals

(0596000 ) 6)

where all blocks in the matrices appearing above are n x n. Note now that

1—q ¢

(e 9+6)

we see that r is a projection and that ||[r, a]| < € for all a € X. For ¢ € [0, 7]

1—
the matrix ( 9 9 whence if we write

define u; := r + exp(it)(1 — r), so (u;) is a path of unitaries connecting

l—q ¢
Hence the path

q l—q\(p O q l—q\ , 1 0} ,
Ut ut,ut Ut
1—gq q 0 1—g¢q 1—g¢q q 0 0

shows that the element in line (39) defines the same class as

(62%) ()66 )

which equals (p@® 1 —¢q,q@® 1 — ¢q). This last element defines the same class

1 —
< 1 7 to the identity, and all (u;) satisfy |[u, a]| < e for all a € X.

as (p, q) by definition, however, so we are done. ]

Proposition A.25. Let A and B be separable C*-algebras with A unital.
Let m: A — L(FE) be a unitally substantial representation of A on a Hilbert
B-module. Then there are isomorphisms

KL(A, B) — lim KK™™(X, B).

and
lim! K K™™(X,SB) — {0},
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where the limits are taken over the directed set of Definition 6.6 and m 15

the closure of 0 in KK (A, B). Moreover, there is a short exact sequence

0 — lim'KK™™(X,SB) - KK(A, B) — lim KK™"™(X, B) — 0.
Proof. The proof follows from Lemma A.24, quite analogously to that of
Proposition A.10. We leave the details to the reader. O

Let us conclude with a final lemma on representation-independence, which
is an analogue of Proposition A.18 above.

Lemma A.26. Let A and B be separable C*-algebras with A unital. Let the
collection of pairs (X, €) consisting of a finite subsets X of Ay and € > 0 be
made into a directed set as in Definition 0.6. Then for any unitally absorbing

representation ™ : A — L(E) we have that
KL(A,B) - lim KK™ (X, B).

and

lim' K K™™(X,SB) — {0},

where {0} is the closure of 0 in KK (A, B). Moreover, there is a short exact
sequence

0 — lim' KK™™(X,SB) —» KK (A, B) — lim KK (X, B) — 0.

Proof. Proposition A.25 tells us that the result is true for some unitally
absorbing representation. Hence just as in the proof of Proposition A.18
above, it suffices to prove that for any two unitally absorbing representations
(7, E), (0, F), we have that

lim KK™™(X, B) = lim KK>™(X, B)

and similarly for the lim!-groups. This follows by an intertwining argument
based on the unitaries from Lemma A.15, just as in the proof of Proposition
A.18: we leave the details to the reader. O
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